You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
331 lines
11 KiB
331 lines
11 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
import mindspore
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
|
|
|
|
|
class SubNet(nn.Cell):
|
|
def __init__(self):
|
|
super(SubNet, self).__init__()
|
|
self.sub = P.Sub()
|
|
|
|
def construct(self, x, y):
|
|
return self.sub(x, y)
|
|
|
|
|
|
class DivNet(nn.Cell):
|
|
def __init__(self):
|
|
super(DivNet, self).__init__()
|
|
self.div = P.Div()
|
|
|
|
def construct(self, x, y):
|
|
return self.div(x, y)
|
|
|
|
|
|
class FloorDivNet(nn.Cell):
|
|
def __init__(self):
|
|
super(FloorDivNet, self).__init__()
|
|
self.floor_div = P.FloorDiv()
|
|
|
|
def construct(self, x, y):
|
|
return self.floor_div(x, y)
|
|
|
|
|
|
class ModNet(nn.Cell):
|
|
def __init__(self):
|
|
super(ModNet, self).__init__()
|
|
self.mod = P.Mod()
|
|
|
|
def construct(self, x, y):
|
|
return self.mod(x, y)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_sub():
|
|
x = np.random.rand(2, 3, 4, 4).astype(np.float32)
|
|
y = np.random.rand(4, 1).astype(np.float32)
|
|
net = SubNet()
|
|
output = net(Tensor(x), Tensor(y, mindspore.float32))
|
|
expect_output = x - y
|
|
assert np.all(output.asnumpy() == expect_output)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_div():
|
|
prop = 1 if np.random.random() < 0.5 else -1
|
|
x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
|
|
y0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
|
|
x1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
|
|
y1_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop
|
|
x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop
|
|
y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop
|
|
x3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop
|
|
y3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop
|
|
x4_np = np.array(768).astype(np.float32) * prop
|
|
y4_np = np.array(3072.5).astype(np.float32) * prop
|
|
x5_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop
|
|
y5_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
|
|
x6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
|
|
y6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
|
|
x7_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop
|
|
y7_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop
|
|
|
|
x0 = Tensor(x0_np)
|
|
y0 = Tensor(y0_np)
|
|
x1 = Tensor(x1_np)
|
|
y1 = Tensor(y1_np)
|
|
x2 = Tensor(x2_np)
|
|
y2 = Tensor(y2_np)
|
|
x3 = Tensor(x3_np)
|
|
y3 = Tensor(y3_np)
|
|
x4 = Tensor(x4_np)
|
|
y4 = Tensor(y4_np)
|
|
x5 = Tensor(x5_np)
|
|
y5 = Tensor(y5_np)
|
|
x6 = Tensor(x6_np)
|
|
y6 = Tensor(y6_np)
|
|
x7 = Tensor(x7_np)
|
|
y7 = Tensor(y7_np)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
|
div = DivNet()
|
|
output0 = div(x0, y0)
|
|
expect0 = np.divide(x0_np, y0_np)
|
|
diff0 = output0.asnumpy() - expect0
|
|
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
|
assert np.all(diff0 < error0)
|
|
assert output0.shape == expect0.shape
|
|
|
|
output1 = div(x1, y1)
|
|
expect1 = np.divide(x1_np, y1_np)
|
|
diff1 = output1.asnumpy() - expect1
|
|
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
|
assert np.all(diff1 < error1)
|
|
assert output1.shape == expect1.shape
|
|
|
|
output2 = div(x2, y2)
|
|
expect2 = np.divide(x2_np, y2_np).astype(np.float16)
|
|
diff2 = output2.asnumpy() - expect2
|
|
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
|
assert np.all(diff2 < error2)
|
|
assert output2.shape == expect2.shape
|
|
|
|
output3 = div(x3, y3)
|
|
expect3 = np.divide(x3_np, y3_np)
|
|
diff3 = output3.asnumpy() - expect3
|
|
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
|
assert np.all(diff3 < error3)
|
|
assert output3.shape == expect3.shape
|
|
|
|
output4 = div(x4, y4)
|
|
expect4 = np.divide(x4_np, y4_np)
|
|
diff4 = output4.asnumpy() - expect4
|
|
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
|
assert np.all(diff4 < error4)
|
|
assert output4.shape == expect4.shape
|
|
|
|
output5 = div(x5, y5)
|
|
expect5 = x5_np // y5_np
|
|
assert np.all(output5.asnumpy() == expect5)
|
|
|
|
output6 = div(x6, y6)
|
|
expect6 = np.divide(x6_np, y6_np)
|
|
diff6 = output6.asnumpy() - expect6
|
|
error6 = np.ones(shape=expect6.shape) * 1.0e-5
|
|
assert np.all(diff6 < error6)
|
|
assert output6.shape == expect6.shape
|
|
|
|
output7 = div(x7, y7)
|
|
expect7 = np.divide(x7_np, y7_np).astype(np.int64)
|
|
assert np.all(output7.asnumpy() == expect7)
|
|
assert output7.shape == expect7.shape
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_floor_div():
|
|
prop = 1 if np.random.random() < 0.5 else -1
|
|
x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
|
|
y0_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop
|
|
x1_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop
|
|
y1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop
|
|
x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop
|
|
y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
|
|
x3_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
|
|
y3_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
|
|
x4_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop
|
|
y4_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop
|
|
|
|
x0 = Tensor(x0_np)
|
|
y0 = Tensor(y0_np)
|
|
x1 = Tensor(x1_np)
|
|
y1 = Tensor(y1_np)
|
|
x2 = Tensor(x2_np)
|
|
y2 = Tensor(y2_np)
|
|
x3 = Tensor(x3_np)
|
|
y3 = Tensor(y3_np)
|
|
x4 = Tensor(x4_np)
|
|
y4 = Tensor(y4_np)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
|
floor_div = FloorDivNet()
|
|
output0 = floor_div(x0, y0)
|
|
expect0 = np.floor_divide(x0_np, y0_np)
|
|
diff0 = output0.asnumpy() - expect0
|
|
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
|
assert np.all(diff0 < error0)
|
|
assert output0.shape == expect0.shape
|
|
|
|
output1 = floor_div(x1, y1)
|
|
expect1 = np.floor_divide(x1_np, y1_np)
|
|
diff1 = output1.asnumpy() - expect1
|
|
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
|
assert np.all(diff1 < error1)
|
|
assert output1.shape == expect1.shape
|
|
|
|
output2 = floor_div(x2, y2)
|
|
expect2 = np.floor_divide(x2_np, y2_np).astype(np.float16)
|
|
diff2 = output2.asnumpy() - expect2
|
|
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
|
assert np.all(diff2 < error2)
|
|
assert output2.shape == expect2.shape
|
|
|
|
output3 = floor_div(x3, y3)
|
|
expect3 = np.floor_divide(x3_np, y3_np)
|
|
diff3 = output3.asnumpy() - expect3
|
|
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
|
assert np.all(diff3 < error3)
|
|
assert output3.shape == expect3.shape
|
|
|
|
output4 = floor_div(x4, y4)
|
|
expect4 = np.floor_divide(x4_np, y4_np)
|
|
diff4 = output4.asnumpy() - expect4
|
|
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
|
assert np.all(diff4 < error4)
|
|
assert output4.shape == expect4.shape
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_mod():
|
|
prop = 1 if np.random.random() < 0.5 else -1
|
|
x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
|
|
y0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
|
|
x1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
|
|
y1_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop
|
|
x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop
|
|
y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop
|
|
x3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop
|
|
y3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop
|
|
x4_np = np.array(768).astype(np.float32) * prop
|
|
y4_np = np.array(3072.5).astype(np.float32) * prop
|
|
x5_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop
|
|
y5_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
|
|
x6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
|
|
y6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
|
|
x7_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop
|
|
y7_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop
|
|
|
|
x0 = Tensor(x0_np)
|
|
y0 = Tensor(y0_np)
|
|
x1 = Tensor(x1_np)
|
|
y1 = Tensor(y1_np)
|
|
x2 = Tensor(x2_np)
|
|
y2 = Tensor(y2_np)
|
|
x3 = Tensor(x3_np)
|
|
y3 = Tensor(y3_np)
|
|
x4 = Tensor(x4_np)
|
|
y4 = Tensor(y4_np)
|
|
x5 = Tensor(x5_np)
|
|
y5 = Tensor(y5_np)
|
|
x6 = Tensor(x6_np)
|
|
y6 = Tensor(y6_np)
|
|
x7 = Tensor(x7_np)
|
|
y7 = Tensor(y7_np)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
|
mod = ModNet()
|
|
output0 = mod(x0, y0)
|
|
expect0 = np.mod(x0_np, y0_np)
|
|
diff0 = output0.asnumpy() - expect0
|
|
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
|
assert np.all(diff0 < error0)
|
|
assert output0.shape == expect0.shape
|
|
|
|
output1 = mod(x1, y1)
|
|
expect1 = np.mod(x1_np, y1_np)
|
|
diff1 = output1.asnumpy() - expect1
|
|
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
|
assert np.all(diff1 < error1)
|
|
assert output1.shape == expect1.shape
|
|
|
|
output2 = mod(x2, y2)
|
|
expect2 = np.mod(x2_np, y2_np).astype(np.float16)
|
|
diff2 = output2.asnumpy() - expect2
|
|
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
|
assert np.all(diff2 < error2)
|
|
assert output2.shape == expect2.shape
|
|
|
|
output3 = mod(x3, y3)
|
|
expect3 = np.mod(x3_np, y3_np)
|
|
diff3 = output3.asnumpy() - expect3
|
|
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
|
assert np.all(diff3 < error3)
|
|
assert output3.shape == expect3.shape
|
|
|
|
output4 = mod(x4, y4)
|
|
expect4 = np.mod(x4_np, y4_np)
|
|
diff4 = output4.asnumpy() - expect4
|
|
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
|
assert np.all(diff4 < error4)
|
|
assert output4.shape == expect4.shape
|
|
|
|
output5 = mod(x5, y5)
|
|
expect5 = np.mod(x5_np, y5_np)
|
|
assert np.all(output5.asnumpy() == expect5)
|
|
assert output5.shape == expect5.shape
|
|
|
|
output6 = mod(x6, y6)
|
|
expect6 = np.mod(x6_np, y6_np)
|
|
diff6 = output6.asnumpy() - expect6
|
|
error6 = np.ones(shape=expect6.shape) * 1.0e-5
|
|
assert np.all(diff6 < error6)
|
|
assert output6.shape == expect6.shape
|
|
|
|
output7 = mod(x7, y7)
|
|
expect7 = np.mod(x7_np, y7_np).astype(np.int64)
|
|
assert np.all(output7.asnumpy() == expect7)
|
|
assert output6.shape == expect6.shape
|
|
|
|
|
|
test_sub()
|
|
test_div()
|
|
test_floor_div()
|
|
test_mod()
|