You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/ccsrc/ir/meta_tensor.h

432 lines
14 KiB

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_IR_META_TENSOR_H_
#define MINDSPORE_CCSRC_IR_META_TENSOR_H_
#include <utility>
#include <vector>
#include <memory>
#include <string>
#include "device/device_address.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "Eigen/Core"
#include "ir/base.h"
#include "ir/dtype.h"
#include "utils/log_adapter.h"
#include "utils/convert_utils.h"
#include "utils/hashing.h"
namespace py = pybind11;
using float16 = Eigen::half;
namespace pybind11 {
namespace detail {
// Similar to enums in `pybind11/numpy.h`. Determined by doing:
// python3 -c 'import numpy as np; print(np.dtype(np.float16).num)'
constexpr int NPY_FLOAT16 = 23;
template <typename T>
struct npy_scalar_caster {
PYBIND11_TYPE_CASTER(T, _("PleaseOverride"));
using Array = array_t<T>;
bool load(handle src, bool convert) {
// Taken from Eigen casters. Permits either scalar dtype or scalar array.
handle type = dtype::of<T>().attr("type");
if (!convert && !isinstance<Array>(src) && !isinstance(src, type)) return false;
Array tmp = Array::ensure(src);
if (tmp && tmp.size() == 1 && tmp.ndim() == 0) {
this->value = *tmp.data();
return true;
}
return false;
}
static handle cast(T src, return_value_policy, handle) {
Array tmp({1});
tmp.mutable_at(0) = src;
tmp.resize({});
// You could also just return the array if you want a scalar array.
object scalar = tmp[tuple()];
return scalar.release();
}
};
template <>
struct npy_format_descriptor<float16> {
static constexpr auto name = "float16";
static pybind11::dtype dtype() {
handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16);
return reinterpret_borrow<pybind11::dtype>(ptr);
}
virtual ~npy_format_descriptor<float16>() {}
};
template <>
struct type_caster<float16> : public npy_scalar_caster<float16> {
static constexpr auto name = "float16";
};
} // namespace detail
} // namespace pybind11
using mindspore::device::DeviceAddress;
using DeviceAddressPtr = std::shared_ptr<mindspore::device::DeviceAddress>;
// brief mindspore namespace.
//
// mindspore namespace is the top level namespace of Mindsporeession project.
// Other namespace should be a sub namespace of mindspore namespace in the ME project.
namespace mindspore {
// brief mindspore::tensor namespace
//
// A sub namespace in ME to support tensor related definition.
namespace tensor {
// brief Device info of Tensor
//
// Includes the format and data type of a tensor.
struct DeviceInfo {
explicit DeviceInfo(std::string format = "DefaultFormat", TypePtr data_type = nullptr)
: format_(std::move(format)), data_type_(std::move(data_type)) {}
std::string format_ = "DefaultFormat";
TypePtr data_type_ = nullptr;
};
// brief Metadata of Tensor
//
// Includes the metadata information of a tensor, such as data type, shape
// and so on. But it does not contain values of a tensor.
class MetaTensor : public Value {
public:
// Construction
MetaTensor();
// brief Constructs a meta tensor of a tensor having data_type data and shape.
//
// The constructed MetaTensor is not a Tensor, but it has the data type and shape
// information of a Tensor. The following codes will create a 2x3 float
// param data_type The data type of the tensor.
// param shape The shape of the tensor.
MetaTensor(const TypeId data_type, const std::vector<int> &shape);
MetaTensor(const TypePtr &type_ptr, const py::tuple &shape);
// brief Constructs a MetaTensor object from an existing MetaTensor instance.
//
// The constructed MetaTensor object will have the same data type and shape as the
// meta_tensor.
//
// param meta_tensor An existing MetaTensor object.
MetaTensor(const MetaTensor &meta_tensor);
~MetaTensor() override = default;
MS_DECLARE_PARENT(MetaTensor, Value)
// brief Overloads operator = for MetaTensor.
//
// The constructed MetaTensor object has the same type and shape with meta_tensor.
//
// param meta_tensor An existing MetaTensor object.
virtual MetaTensor &operator=(const MetaTensor &meta_tensor);
// brief Compares two MetaTensor objects.
//
// The constructed MetaTensor object has the same type and shape with meta_tensor.
//
// param meta_tensor The MetaTensor object to be compared.
// return true: If having same type and shape, return true, or return false.
virtual bool operator==(const MetaTensor &meta_tensor) const;
// brief Returns the data type of the tensor in its MetaTensor.
//
// All the types are defined in "ir/dtype.h".
TypePtr Dtype() const;
TypeId data_type() const { return data_type_; }
std::string ToString() const override;
std::string DumpText() const override;
// brief Sets the data type of a tensor in its MetaTensor.
//
// param data_type The data type of the tensor to be set.
virtual TypeId set_data_type(const TypeId data_type) {
data_type_ = data_type;
return data_type_;
}
virtual TypePtr SetDtype(const TypePtr type_ptr);
// brief Get tensor's shape.
//
// The shape of a tensor is stored in a vector<int>. Each
// element of the vector represents the size of a dimension of the tensor.
// The order of each element in the vector is as same as the the dimension's
// order it represents.
//
// return A const vector<int> which represents the shape of the tensor.
std::vector<int> shape() const { return shape_; }
// brief Sets the shape of a tensor.
//
// The shape of a tensor is stored in a vector<int>. Each
// element of the vector represents the size of a dimension of the tensor.
// The order of each element in the vector is as same as the the dimension's
// order it represents.
//
// param shape The shape of the tensor.
// return The shape's size.
size_t set_shape(const std::vector<int> &shape) {
this->shape_ = shape;
return shape_.size();
}
// Get tensor's device info.
DeviceInfo device_info() const { return device_info_; }
// Set tensor's device info.
void set_device_info(const DeviceInfo &device_info) { device_info_ = device_info; }
void SetDeviceInfo(const std::string &format, const TypePtr &data_type);
// Get the size of a given dimension by its index number.
int DimensionSize(size_t index) const;
// Get total number of elements in a tensor.
int ElementsNum() const;
std::size_t hash() const override {
std::size_t hash_value = std::hash<int>{}(SizeToInt(data_type_));
hash_value = hash_combine(hash_value, std::hash<size_t>{}(shape_.size()));
// hash all elements may costly, so only take at most 4 elements into account based on
// some experiments.
for (size_t i = 0; (i < shape_.size()) && (i < 4); ++i) {
hash_value = hash_combine(hash_value, (std::hash<int>{}(shape_[i])));
}
return hash_value;
}
bool operator==(const Value &other) const override {
if (other.isa<MetaTensor>()) {
auto other_ = static_cast<const MetaTensor &>(other);
return *this == other_;
} else {
return false;
}
}
protected:
// brief Data type of the tensor.
//
// All support data type is in Number Types of [TypeId],
// including [kNumberTypeBool], [kNumberTypeInt],
// [kNumberTypeUInt32], [kNumberTypeFloat32] and [kNumberTypeFloat64].
TypeId data_type_;
// brief Shape of the tensor.
//
// A std::vector<int> container is used to store the shape of a tensor.
// Each element of the vector represents the size of a dimension of the tensor.
// The order of each element in the vector is as same as the the dimension's
// order it represents. If the dimension size is not set, its value will be -1.
std::vector<int> shape_;
// brief Device info of Tensor
//
// Includes the format and data type of a tensor on device.
DeviceInfo device_info_;
};
// Tensor entity class
class Tensor : public MetaTensor {
public:
Tensor() = default;
abstract::AbstractBasePtr ToAbstract() override;
// brief Constructor for Python.
//
// param type_ptr [TypePty] Data type of the tensor.
// param py_shape [py::tuple] The shape represented by py::tuple of the tensor.
Tensor(const TypePtr &type_ptr, const py::tuple &shape);
// brief Constructor for C++.
//
// param data_type [TypeId] Data type of the tensor.
// param shape The shape represented by std::vector<int> of the tensor.
Tensor(TypeId data_type, const std::vector<int> &shape);
// brief Constructor for Python.
//
// param input [py::array] Data value of the tensor.
// param data_type [TypeId] Data type of the tensor.
explicit Tensor(const py::array &input, const TypePtr &data_type = nullptr);
// brief Constructor
//
// param input [py::list] the data for tensor
// param data_type [TypeId] data type
explicit Tensor(const py::list &input, const TypePtr &data_type = nullptr);
// brief Constructor
//
// param input [py::tuple] the data for tensor
// param data_type [TypeId] data type
explicit Tensor(const py::tuple &input, const TypePtr &data_type = nullptr);
// brief Constructor
//
// param input [py::float_] the data for tensor
// param data_type [TypeId] data type
explicit Tensor(const py::float_ &input, const TypePtr &data_type = nullptr);
// brief Constructor
//
// param input [py::int_] the data for tensor
// param data_type [TypeId] data type
explicit Tensor(const py::int_ &input, const TypePtr &data_type = nullptr);
// brief Constructor
//
// param input [Tensor] the data for tensor
// param data_type [TypeId] data type
Tensor(const Tensor &tensor, const TypePtr &data_type = nullptr);
~Tensor() override = default;
MS_DECLARE_PARENT(Tensor, MetaTensor);
// brief Overloads operator = for Tensor.
//
// The constructed Tensor object has the same type and shape with tensor.
//
// param tensor An existing Tensor object.
Tensor &operator=(const Tensor &tensor);
// brief Compares two Tensor objects.
//
// Compare two tensor objects to see if they have same data type, shape and
// data value.
//
// param tensor The Tensor object to be compared.
// return true: If having same type, shape and data, return true, or return false.
bool operator==(const Tensor &tensor) const;
// It is different from 'operator==' which just compare shape/type/address, it do real value comparison.
bool ValueEqual(const Tensor &other) const;
bool operator==(const Value &other) const override {
if (other.isa<Tensor>()) {
auto other_ = static_cast<const Tensor &>(other);
return *this == other_;
} else {
return false;
}
}
// brief Gets tensor's dimension
//
// return The number of dimensions of the tensor data.
int DataDim() const;
// brief Getting tensor data size
//
// return The total number of elements of the tensor data.
int DataSize() const;
// brief Get tensor's shape
//
// return [py::tuple] The tensor's shape
py::tuple GetPyTupleShape() const;
// brief Tensor's data value.
//
// return [py::array] The tensor's data in py::array.
py::array data() const;
// brief Get the data type fo the tensor for C++
//
// return [int] The tensor's data type will be cast to int to return.
int data_type_c() const;
// brief Get the tensor's shape for C++
//
// return [std::vector<int>]
std::vector<int> shape_c(void) const;
// brief Get Tensor data pointer for c++ type
//
// param writable true if writable, false if read only
// return The pointer to the object
void *data_c(bool writable = false);
// brief Get data type from tensor data.
//
// param buf The buffer info of the py::array data.
// return The [TypeId] of the tensor data.
TypeId GetDataType(const py::buffer_info &buf) const;
// brief Sets the data type of a tensor.
//
// param data_type The data type of the tensor to be set.
//
TypeId set_data_type(const TypeId data_type) override;
TypePtr SetDtype(const TypePtr type_ptr) override;
std::string GetShapeAndDataTypeInfo() const;
std::string ToString() const override;
std::string ToStringRepr() const;
py::array data_; // < Tensor's data value
const bool parse_info_ = true;
private:
// brief init tensor
//
// param input [py::array] the data for tensor
// param data_type [TypeId] data type
// return true if succeed, false if failed.
void init(const py::array &input, const TypeId &data_type);
void init(const py::array &input, const TypePtr &type_ptr);
// brief init tensor attribute
//
// param data_type [TypeId] Data type of the tensor.
// param shape [py::array] The shape of the tensor.
// return true if succeed, false if failed.
void init(TypeId data_type, const std::vector<int> &shape, py::array *data);
bool convert_data(const py::array &in, const TypeId in_data_type, py::array *out, const TypeId out_data_type);
public:
bool is_dirty() const { return dirty_; }
void set_dirty(const bool dirty) { dirty_ = dirty; }
DeviceAddressPtr device_address() const { return device_address_; }
void set_device_address(const DeviceAddressPtr &device_address) { device_address_ = device_address; }
py::array data_sync();
private:
bool dirty_{true};
DeviceAddressPtr device_address_{nullptr};
};
using TensorPtr = std::shared_ptr<Tensor>;
using TensorPtrList = std::vector<std::shared_ptr<Tensor>>;
} // namespace tensor
} // namespace mindspore
#endif // MINDSPORE_CCSRC_IR_META_TENSOR_H_