You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/cpp/dataset/test_de.cc

91 lines
3.2 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <vector>
#include "common/common_test.h"
#include "include/api/types.h"
#include "minddata/dataset/include/execute.h"
#include "minddata/dataset/include/vision.h"
#include "minddata/dataset/kernels/tensor_op.h"
#include "include/api/model.h"
#include "include/api/serialization.h"
#include "include/api/context.h"
using namespace mindspore;
using namespace mindspore::dataset::vision;
class TestDE : public ST::Common {
public:
TestDE() {}
};
TEST_F(TestDE, TestResNetPreprocess) {
// Read images
std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
// Define transform operations
mindspore::dataset::Execute Transform({
Decode(), Resize({224, 224}),
Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}),
HWC2CHW()});
// Apply transform on images
Status rc = Transform(image, &image);
// Check image info
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(image.Shape().size(), 3);
ASSERT_EQ(image.Shape()[0], 3);
ASSERT_EQ(image.Shape()[1], 224);
ASSERT_EQ(image.Shape()[2], 224);
}
TEST_F(TestDE, TestDvpp) {
#ifdef ENABLE_ACL
// Read images from target directory
std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
auto image = MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
// Define dvpp transform
std::vector<uint32_t> crop_size = {224, 224};
std::vector<uint32_t> resize_size = {256, 256};
mindspore::dataset::Execute Transform(DvppDecodeResizeCropJpeg(crop_size, resize_size));
// Apply transform on images
Status rc = Transform(image, &image);
// Check image info
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(image.Shape().size(), 3);
int32_t real_h = 0;
int32_t real_w = 0;
int32_t remainder = crop_size[crop_size.size() - 1] % 16;
if (crop_size.size() == 1) {
real_h = (crop_size[0] % 2 == 0) ? crop_size[0] : crop_size[0] + 1;
real_w = (remainder == 0) ? crop_size[0] : crop_size[0] + 16 - remainder;
} else {
real_h = (crop_size[0] % 2 == 0) ? crop_size[0] : crop_size[0] + 1;
real_w = (remainder == 0) ? crop_size[1] : crop_size[1] + 16 - remainder;
}
ASSERT_EQ(image.Shape()[0], real_h * real_w * 1.5); // For image in YUV format, each pixel takes 1.5 byte
ASSERT_EQ(image.Shape()[1], 1);
ASSERT_EQ(image.Shape()[2], 1);
#endif
}