You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/train/summary/test_graph_summary.py

144 lines
4.7 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_graph_summary """
import logging
import os
import numpy as np
import mindspore.nn as nn
from mindspore import Model, context
from mindspore.nn.optim import Momentum
from mindspore.train.callback import SummaryStep
from mindspore.train.summary.summary_record import SummaryRecord
from .....dataset_mock import MindData
CUR_DIR = os.getcwd()
SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/"
GRAPH_TEMP = CUR_DIR + "/ms_output-resnet50.pb"
log = logging.getLogger("test")
log.setLevel(level=logging.ERROR)
class Net(nn.Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal', pad_mode='valid')
self.bn = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.flatten = nn.Flatten()
self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0
def construct(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.flatten(x)
out = self.fc(x)
return out
class LossNet(nn.Cell):
""" LossNet definition """
def __init__(self):
super(LossNet, self).__init__()
self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal', pad_mode='valid')
self.bn = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.flatten = nn.Flatten()
self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0
self.loss = nn.SoftmaxCrossEntropyWithLogits()
def construct(self, x, y):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.flatten(x)
x = self.fc(x)
out = self.loss(x, y)
return out
def get_model():
""" get_model """
net = Net()
loss = nn.SoftmaxCrossEntropyWithLogits()
optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
return model
def get_dataset():
""" get_datasetdataset """
dataset_types = (np.float32, np.float32)
dataset_shapes = ((2, 3, 224, 224), (2, 3))
dataset = MindData(size=2, batch_size=2,
np_types=dataset_types,
output_shapes=dataset_shapes,
input_indexs=(0, 1))
return dataset
# Test 1: summary sample of graph
def test_graph_summary_sample():
""" test_graph_summary_sample """
log.debug("begin test_graph_summary_sample")
dataset = get_dataset()
net = Net()
loss = nn.SoftmaxCrossEntropyWithLogits()
optim = Momentum(net.trainable_params(), 0.1, 0.9)
context.set_context(mode=context.GRAPH_MODE)
model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_GRAPH", network=model._train_network) as test_writer:
model.train(2, dataset)
# step 2: create the Event
for i in range(1, 5):
test_writer.record(i)
# step 3: send the event to mq
# step 4: accept the event and write the file
log.debug("finished test_graph_summary_sample")
def test_graph_summary_callback():
dataset = get_dataset()
net = Net()
loss = nn.SoftmaxCrossEntropyWithLogits()
optim = Momentum(net.trainable_params(), 0.1, 0.9)
context.set_context(mode=context.GRAPH_MODE)
model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_GRAPH", network=model._train_network) as test_writer:
summary_cb = SummaryStep(test_writer, 1)
model.train(2, dataset, callbacks=summary_cb)
def test_graph_summary_callback2():
dataset = get_dataset()
net = Net()
loss = nn.SoftmaxCrossEntropyWithLogits()
optim = Momentum(net.trainable_params(), 0.1, 0.9)
context.set_context(mode=context.GRAPH_MODE)
model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_GRAPH", network=net) as test_writer:
summary_cb = SummaryStep(test_writer, 1)
model.train(2, dataset, callbacks=summary_cb)