You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
583 lines
21 KiB
583 lines
21 KiB
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.common.api import _executor
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
|
|
|
|
class NetWithLossNoBias(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLossNoBias, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x, y):
|
|
predict = self.network(x, y)
|
|
return self.loss(predict)
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, b):
|
|
predict = self.network(x, y, b)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrapNoBias(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrapNoBias, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y):
|
|
return C.grad_all(self.network)(x, y)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, b):
|
|
return C.grad_all(self.network)(x, y, b)
|
|
|
|
|
|
def compile_net_no_bias(net, x, y):
|
|
net.set_auto_parallel()
|
|
_executor.compile(net, x, y)
|
|
|
|
|
|
def compile_net(net, x, y, b):
|
|
net.set_auto_parallel()
|
|
_executor.compile(net, x, y, b)
|
|
|
|
|
|
# model_parallel test
|
|
def test_sum_mul():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy2)
|
|
self.mul2 = P.Mul().set_strategy(strategy3)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_sum(out, (1,))
|
|
out = self.mul2(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 1, 8), (1, 1, 8))
|
|
strategy2 = ((4, 1, 2),)
|
|
strategy3 = ((2, 4), (2, 4))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_sum_mul2():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy2)
|
|
self.mul2 = P.Mul().set_strategy(strategy3)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_sum(out, (0, 1))
|
|
out = self.mul2(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 1, 4, 2), (1, 1, 4, 2))
|
|
strategy2 = ((2, 4, 1, 1),)
|
|
strategy3 = ((2, 4), (2, 4))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 128, 64, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 128, 64, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_sum_mul3():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy2)
|
|
self.mul2 = P.Mul().set_strategy(strategy3)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_sum(out, -1)
|
|
out = self.mul2(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 4, 2), (1, 4, 2))
|
|
strategy2 = ((4, 2, 1),)
|
|
strategy3 = ((2, 4), (2, 4))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_sum_mul4():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.reduce_sum = P.ReduceSum(keep_dims=True).set_strategy(strategy2)
|
|
self.mul2 = P.Mul().set_strategy(strategy3)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_sum(out, -1)
|
|
out = self.mul2(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 4, 2), (1, 4, 2))
|
|
strategy2 = ((2, 2, 2),)
|
|
strategy3 = ((4, 2, 1), (4, 2, 1))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([128, 32, 1]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_sum_mul5():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.reduce_sum = P.ReduceSum(keep_dims=True).set_strategy(strategy2)
|
|
|
|
def construct(self, x, y):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_sum(out, 0)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=64, global_rank=0)
|
|
strategy1 = ((1, 8, 8), (1, 8, 8))
|
|
strategy2 = ((2, 4, 1),)
|
|
net = GradWrapNoBias(NetWithLossNoBias(Net(strategy1, strategy2)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
compile_net_no_bias(net, x, y)
|
|
|
|
|
|
def test_sum_mul6():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.reduce_sum = P.ReduceSum(keep_dims=True).set_strategy(strategy2)
|
|
|
|
def construct(self, x, y):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_sum(out, 1)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=64, global_rank=0)
|
|
strategy1 = ((1, 8, 8), (1, 8, 8))
|
|
strategy2 = ((2, 1, 4),)
|
|
net = GradWrapNoBias(NetWithLossNoBias(Net(strategy1, strategy2)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
compile_net_no_bias(net, x, y)
|
|
|
|
|
|
def test_sum_mul7():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.reduce_sum = P.ReduceSum(keep_dims=True).set_strategy(strategy2)
|
|
|
|
def construct(self, x, y):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_sum(out, (0, 1))
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=64, global_rank=0)
|
|
strategy1 = ((1, 8, 8), (1, 8, 8))
|
|
strategy2 = ((2, 4, 1),)
|
|
net = GradWrapNoBias(NetWithLossNoBias(Net(strategy1, strategy2)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
compile_net_no_bias(net, x, y)
|
|
|
|
|
|
def test_max_mul():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.reduce_max = P.ReduceMax(keep_dims=False).set_strategy(strategy2)
|
|
self.mul2 = P.Mul().set_strategy(strategy3)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_max(out, -1)
|
|
out = self.mul2(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 4, 2), (1, 4, 2))
|
|
strategy2 = ((4, 1, 2),)
|
|
strategy3 = ((2, 4), (2, 4))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_min_mul():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.reduce_min = P.ReduceMin(keep_dims=False).set_strategy(strategy2)
|
|
self.mul2 = P.Mul().set_strategy(strategy3)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_min(out, 0)
|
|
out = self.mul2(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 4, 2), (1, 4, 2))
|
|
strategy2 = ((4, 1, 2),)
|
|
strategy3 = ((2, 4), (2, 4))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_reduce_mean_mul_float32():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.reduce_mean = P.ReduceMean(keep_dims=False).set_strategy(strategy2)
|
|
self.mul2 = P.Mul().set_strategy(strategy3)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_mean(out, 0)
|
|
out = self.mul2(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 4, 2), (1, 4, 2))
|
|
strategy2 = ((4, 1, 2),)
|
|
strategy3 = ((2, 4), (2, 4))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
class ArgMaxWithValueNet(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.arg_max_with_value = P.ArgMaxWithValue(keep_dims=False, axis=-1).set_strategy(strategy2)
|
|
self.mul2 = P.Mul().set_strategy(strategy3)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.mul1(x, y)
|
|
_, out = self.arg_max_with_value(out)
|
|
out = self.mul2(out, b)
|
|
return out
|
|
|
|
|
|
class ArgMinWithValueNet(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.arg_min_with_value = P.ArgMinWithValue(keep_dims=False, axis=-1).set_strategy(strategy2)
|
|
self.mul2 = P.Mul().set_strategy(strategy3)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.mul1(x, y)
|
|
_, out = self.arg_min_with_value(out)
|
|
out = self.mul2(out, b)
|
|
return out
|
|
|
|
|
|
def gen_inputs_and_compile_net(net):
|
|
x = Tensor(np.ones([128, 64, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 64, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def gen_inputs_and_compile_net_no_bias(net):
|
|
x = Tensor(np.ones([128, 64, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 64, 64]), dtype=ms.float32)
|
|
compile_net_no_bias(net, x, y)
|
|
|
|
|
|
def tobefixed_test_arg_max_with_value_mul_semi_axis_parallel():
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 4, 2), (1, 4, 2))
|
|
strategy2 = ((4, 1, 2),)
|
|
strategy3 = ((2, 4), (2, 4))
|
|
net = GradWrap(NetWithLoss(ArgMaxWithValueNet(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
gen_inputs_and_compile_net(net)
|
|
|
|
|
|
def test_arg_max_with_value_mul_semi():
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 4, 2), (1, 4, 2))
|
|
strategy2 = ((4, 1, 1),)
|
|
strategy3 = ((2, 4), (2, 4))
|
|
net = GradWrap(NetWithLoss(ArgMaxWithValueNet(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
gen_inputs_and_compile_net(net)
|
|
|
|
|
|
def test_arg_max_with_value_mul_auto():
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = None
|
|
strategy2 = None
|
|
strategy3 = None
|
|
net = GradWrap(NetWithLoss(ArgMaxWithValueNet(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
gen_inputs_and_compile_net(net)
|
|
|
|
|
|
def test_arg_min_with_value_mul_semi_axis_parallel():
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 4, 2), (1, 4, 2))
|
|
strategy2 = ((4, 1, 2),)
|
|
strategy3 = ((2, 4), (2, 4))
|
|
net = GradWrap(NetWithLoss(ArgMinWithValueNet(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
gen_inputs_and_compile_net(net)
|
|
|
|
|
|
def test_arg_min_with_value_mul_semi():
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 4, 2), (1, 4, 2))
|
|
strategy2 = ((4, 1, 1),)
|
|
strategy3 = ((2, 4), (2, 4))
|
|
net = GradWrap(NetWithLoss(ArgMinWithValueNet(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
gen_inputs_and_compile_net(net)
|
|
|
|
|
|
def test_arg_min_with_value_mul_auto():
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = None
|
|
strategy2 = None
|
|
strategy3 = None
|
|
net = GradWrap(NetWithLoss(ArgMinWithValueNet(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
gen_inputs_and_compile_net(net)
|
|
|
|
|
|
class ArgMinWithValueNet2(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.arg_min_with_value = P.ArgMinWithValue(keep_dims=True, axis=-1).set_strategy(strategy2)
|
|
self.relu = P.ReLU().set_strategy(strategy3)
|
|
|
|
def construct(self, x, y):
|
|
out = self.mul1(x, y)
|
|
_, out = self.arg_min_with_value(out)
|
|
out = self.relu(out)
|
|
return out
|
|
|
|
|
|
def tobefixed_test_arg_min_with_value_mul_semi_axis_parallel2():
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 4, 2), (1, 4, 2))
|
|
strategy2 = ((4, 1, 2),)
|
|
strategy3 = ((2, 4, 1),)
|
|
net = GradWrapNoBias(NetWithLossNoBias(ArgMinWithValueNet2(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
gen_inputs_and_compile_net_no_bias(net)
|
|
|
|
|
|
def test_arg_min_with_value_mul_semi2():
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 4, 2), (1, 4, 2))
|
|
strategy2 = ((4, 1, 1),)
|
|
strategy3 = ((2, 4, 1),)
|
|
net = GradWrapNoBias(NetWithLossNoBias(ArgMinWithValueNet2(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
gen_inputs_and_compile_net_no_bias(net)
|
|
|
|
|
|
def test_arg_min_with_value_mul_auto2():
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = None
|
|
strategy2 = None
|
|
strategy3 = None
|
|
net = GradWrapNoBias(NetWithLossNoBias(ArgMinWithValueNet2(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
gen_inputs_and_compile_net_no_bias(net)
|
|
|
|
|
|
def test_cross_batch():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy2)
|
|
self.reduce_mean = P.ReduceMean(keep_dims=False).set_strategy(strategy3).add_prim_attr("cross_batch", True)
|
|
|
|
def construct(self, x, y):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_sum(out, -1)
|
|
out = self.reduce_mean(out, 0)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((4, 2), (4, 2))
|
|
strategy2 = ((2, 1),)
|
|
strategy3 = ((8,),)
|
|
net = GradWrapNoBias(NetWithLossNoBias(Net(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
compile_net_no_bias(net, x, y)
|
|
|
|
|
|
def test_cross_batch2():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul1 = P.Mul().set_strategy(strategy1)
|
|
self.reduce_mean = P.ReduceMean(keep_dims=False).set_strategy(strategy2)
|
|
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy3).add_prim_attr("cross_batch", True)
|
|
|
|
def construct(self, x, y):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_mean(out, -1)
|
|
out = self.reduce_sum(out, 0)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((4, 2), (4, 2))
|
|
strategy2 = ((2, 1),)
|
|
strategy3 = ((8,),)
|
|
net = GradWrapNoBias(NetWithLossNoBias(Net(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
compile_net_no_bias(net, x, y)
|
|
|
|
|
|
def test_cross_batch_auto():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.mul1 = P.Mul()
|
|
self.reduce_mean = P.ReduceMean(keep_dims=False)
|
|
self.reduce_sum = P.ReduceSum(keep_dims=False).add_prim_attr("cross_batch", True)
|
|
|
|
def construct(self, x, y):
|
|
out = self.mul1(x, y)
|
|
out = self.reduce_mean(out, -1)
|
|
out = self.reduce_sum(out, 0)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
net = GradWrapNoBias(NetWithLossNoBias(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
|
|
x = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
compile_net_no_bias(net, x, y)
|
|
|
|
|
|
def test_max_empty_tuple():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.mul = P.Mul().set_strategy(strategy1)
|
|
self.reduce_max = P.ReduceMax(keep_dims=False).set_strategy(strategy2)
|
|
self.add = P.TensorAdd().set_strategy(strategy3)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.mul(x, y)
|
|
out = self.reduce_max(out)
|
|
out = self.add(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 4, 2), (1, 4, 2))
|
|
strategy2 = ((4, 1, 2),)
|
|
strategy3 = ((), (1, 1))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
|
|
compile_net(net, x, y, b)
|