You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
55 lines
2.2 KiB
55 lines
2.2 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
resnext export mindir.
|
|
"""
|
|
import argparse
|
|
import numpy as np
|
|
from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export
|
|
from src.config import config
|
|
from src.image_classification import get_network
|
|
|
|
|
|
def parse_args():
|
|
"""parse_args"""
|
|
parser = argparse.ArgumentParser('mindspore classification test')
|
|
parser.add_argument('--platform', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform')
|
|
|
|
parser.add_argument('--pretrained', type=str, required=True, help='fully path of pretrained model to load. '
|
|
'If it is a direction, it will test all ckpt')
|
|
|
|
args, _ = parser.parse_known_args()
|
|
args.image_size = config.image_size
|
|
args.num_classes = config.num_classes
|
|
|
|
args.image_size = list(map(int, config.image_size.split(',')))
|
|
args.image_height = args.image_size[0]
|
|
args.image_width = args.image_size[1]
|
|
args.export_format = config.export_format
|
|
args.export_file = config.export_file
|
|
return args
|
|
|
|
if __name__ == '__main__':
|
|
args_export = parse_args()
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args_export.platform)
|
|
|
|
net = get_network(num_classes=args_export.num_classes, platform=args_export.platform)
|
|
|
|
param_dict = load_checkpoint(args_export.pretrained)
|
|
load_param_into_net(net, param_dict)
|
|
input_shp = [1, 3, args_export.image_height, args_export.image_width]
|
|
input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32))
|
|
export(net, input_array, file_name=args_export.export_file, file_format=args_export.export_format)
|