You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
54 lines
2.0 KiB
54 lines
2.0 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""export checkpoint file into air models"""
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor, context
|
|
from mindspore.train.serialization import load_checkpoint, export
|
|
|
|
from src.gcn import GCN
|
|
from src.config import ConfigGCN
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='GCN_export')
|
|
parser.add_argument('--ckpt_file', type=str, default='', help='GCN ckpt file.')
|
|
parser.add_argument('--output_file', type=str, default='gcn.air', help='GCN output air name.')
|
|
parser.add_argument('--dataset', type=str, default='cora', help='GCN dataset name.')
|
|
args_opt = parser.parse_args()
|
|
|
|
config = ConfigGCN()
|
|
|
|
if args_opt.dataset == "cora":
|
|
input_dim = 1433
|
|
class_num = 7
|
|
adj = Tensor(np.zeros((2708, 2708), np.float64))
|
|
feature = Tensor(np.zeros((2708, 1433), np.float32))
|
|
else:
|
|
input_dim = 3703
|
|
class_num = 6
|
|
adj = Tensor(np.zeros((3312, 3312), np.float64))
|
|
feature = Tensor(np.zeros((3312, 3703), np.float32))
|
|
|
|
gcn_net = GCN(config, input_dim, class_num)
|
|
|
|
gcn_net.set_train(False)
|
|
load_checkpoint(args_opt.ckpt_file, net=gcn_net)
|
|
gcn_net.add_flags_recursive(fp16=True)
|
|
|
|
export(gcn_net, adj, feature, file_name=args_opt.output_file, file_format="AIR")
|