You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/ccsrc/backend/session/gpu_session.cc

412 lines
17 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/session/gpu_session.h"
#include "runtime/device/gpu/kernel_info_setter.h"
#include "runtime/device/gpu/gpu_kernel_build.h"
#include "runtime/device/gpu/gpu_kernel_runtime.h"
#include "runtime/device/gpu/gpu_stream_assign.h"
#include "backend/optimizer/common/optimizer.h"
#include "backend/optimizer/common/pass_manager.h"
#include "backend/optimizer/common/helper.h"
#include "backend/optimizer/pass/communication_op_fusion.h"
#include "backend/optimizer/pass/getitem_tuple.h"
#include "backend/optimizer/gpu/adam_weight_decay_fusion.h"
#include "backend/optimizer/gpu/adam_fusion.h"
#include "backend/optimizer/gpu/apply_momentum_weight_scale_fusion.h"
#include "backend/optimizer/gpu/apply_momentum_scale_fusion.h"
#include "backend/optimizer/gpu/batch_norm_relu_fusion.h"
#include "backend/optimizer/gpu/batch_norm_relu_grad_fusion.h"
#include "backend/optimizer/gpu/batch_norm_add_relu_fusion.h"
#include "backend/optimizer/gpu/batch_norm_add_relu_grad_fusion.h"
#include "backend/optimizer/gpu/replace_momentum_cast_fusion.h"
#include "backend/optimizer/gpu/replace_addn_fusion.h"
#include "backend/optimizer/gpu/insert_format_transform_op.h"
#include "backend/optimizer/gpu/remove_format_transform_pair.h"
#include "backend/optimizer/gpu/remove_redundant_format_transform.h"
#include "backend/optimizer/gpu/cudnn_inplace_fusion.h"
#include "backend/optimizer/gpu/reduce_precision_fusion.h"
#include "backend/optimizer/graph_kernel/value_graph_binder.h"
#include "backend/optimizer/graph_kernel/graph_kernel_splitter.h"
#include "backend/optimizer/graph_kernel/graph_kernel_expander.h"
#include "backend/optimizer/graph_kernel/basic_ops_fusion.h"
#include "backend/optimizer/graph_kernel/composite_ops_fusion.h"
#include "backend/optimizer/graph_kernel/arithmetic_simplify.h"
#include "runtime/device/kernel_runtime_manager.h"
#include "utils/ms_utils.h"
#include "utils/config_manager.h"
#include "common/trans.h"
#include "utils/ms_context.h"
#include "debug/data_dump/e2e_dump_util.h"
#include "debug/tensor_load.h"
#include "debug/dump_proto.h"
namespace mindspore {
namespace session {
namespace gpu {
using AnfAlgo = mindspore::session::AnfRuntimeAlgorithm;
void GPUSession::SelectKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const {
MS_EXCEPTION_IF_NULL(kernel_graph);
device::gpu::FormatTransformChecker::GetInstance().CheckSupportFormatTransform(kernel_graph);
for (const auto &kernel_node : kernel_graph->execution_order()) {
MS_EXCEPTION_IF_NULL(kernel_node);
device::gpu::SetKernelInfo(kernel_node);
}
}
void GPUSession::StartKernelRT() const {
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
MS_EXCEPTION_IF_NULL(runtime_instance);
if (!runtime_instance->Init()) {
MS_LOG(EXCEPTION) << "GPU start kernel runtime failed";
}
}
void GPUSession::Optimize(const std::shared_ptr<KernelGraph> &kernel_graph) {
MS_EXCEPTION_IF_NULL(kernel_graph);
auto context_ptr = MsContext::GetInstance();
MS_EXCEPTION_IF_NULL(context_ptr);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
pm->AddPass(std::make_shared<opt::AdamWeightDecayFusion>());
pm->AddPass(std::make_shared<opt::AdamFusion>());
pm->AddPass(std::make_shared<opt::ReplaceMomentumCastFusion>());
pm->AddPass(std::make_shared<opt::ReplaceAddNFusion>());
optimizer->AddPassManager(pm);
(void)optimizer->Optimize(kernel_graph);
kernel_graph->SetExecOrderByDefault();
}
void GPUSession::HardwareOptimize(const std::shared_ptr<KernelGraph> &kernel_graph) {
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
pm->AddPass(std::make_shared<opt::BatchNormReluFusion>());
pm->AddPass(std::make_shared<opt::BatchNormReluGradFusion>());
pm->AddPass(std::make_shared<opt::BatchNormAddReluFusion>());
pm->AddPass(std::make_shared<opt::InsertFormatTransformOp>());
pm->AddPass(std::make_shared<opt::RemoveFormatTransformPair>());
pm->AddPass(std::make_shared<opt::RemoveRedundantFormatTransform>());
pm->AddPass(std::make_shared<opt::AllReduceFusion>());
pm->AddPass(std::make_shared<opt::GetitemTuple>());
pm->AddPass(std::make_shared<opt::ReducePrecisionFusion>("reduce_precision"));
optimizer->AddPassManager(pm);
(void)optimizer->Optimize(kernel_graph);
kernel_graph->SetExecOrderByDefault();
}
void GPUSession::GraphKernelOptimize(const std::shared_ptr<KernelGraph> &kernel_graph) {
auto context_ptr = MsContext::GetInstance();
MS_EXCEPTION_IF_NULL(context_ptr);
if (!(context_ptr->get_param<bool>(MS_CTX_ENABLE_GRAPH_KERNEL))) {
return;
}
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>("graph_kernel_pm");
pm->AddPass(std::make_shared<opt::GraphKernelExpander>());
pm->AddPass(std::make_shared<opt::BasicOpsFusion>());
pm->AddPass(std::make_shared<opt::CompositeOpsFusion>());
pm->AddPass(std::make_shared<opt::ArithmeticSimplify>());
pm->AddPass(std::make_shared<opt::GraphKernelSplitter>());
// After Simplify and Splitter, a lot of redundant getitem/maketuple
// will be exposed, use GetitemTuple Pass to delete them.
pm->AddPass(std::make_shared<opt::GetitemTuple>());
pm->AddPass(std::make_shared<opt::BindValueToGraph>());
optimizer->AddPassManager(pm);
(void)optimizer->Optimize(kernel_graph);
kernel_graph->SetExecOrderByDefault();
}
void GPUSession::AssignStream(const std::shared_ptr<KernelGraph> &kernel_graph) {
MS_EXCEPTION_IF_NULL(kernel_graph);
device::gpu::AssignGpuStream(kernel_graph);
}
void GPUSession::BuildKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const {
device::gpu::GpuBuild(kernel_graph);
}
void GPUSession::AllocateMemory(KernelGraph *kernel_graph) const {
MS_EXCEPTION_IF_NULL(kernel_graph);
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
MS_EXCEPTION_IF_NULL(runtime_instance);
runtime_instance->AssignMemory(kernel_graph);
}
void GPUSession::RunOpAllocateMemory(const ValuePtr &pre_output_value,
const std::vector<tensor::TensorPtr> &input_tensors,
KernelGraph *kernel_graph) const {
MS_EXCEPTION_IF_NULL(kernel_graph);
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
MS_EXCEPTION_IF_NULL(runtime_instance);
runtime_instance->RunOpAssignMemory(pre_output_value, input_tensors, kernel_graph);
}
void GPUSession::RunOpClearMemory(KernelGraph *kernel_graph) const {
MS_EXCEPTION_IF_NULL(kernel_graph);
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
MS_EXCEPTION_IF_NULL(runtime_instance);
runtime_instance->RunOpClearMemory(kernel_graph);
}
void GPUSession::LoadInputData(const std::shared_ptr<KernelGraph> &kernel_graph,
const std::vector<tensor::TensorPtr> &inputs_const) const {
std::vector<tensor::TensorPtr> inputs(inputs_const);
MS_EXCEPTION_IF_NULL(kernel_graph);
std::vector<AnfNodePtr> input_nodes;
for (const auto &input_node : kernel_graph->inputs()) {
auto params = AnfAlgo::GetAllOutput(input_node);
std::copy(params.begin(), params.end(), std::back_inserter(input_nodes));
}
auto ms_context = MsContext::GetInstance();
MS_EXCEPTION_IF_NULL(ms_context);
if (inputs.size() != input_nodes.size()) {
MS_LOG(EXCEPTION) << "Tensor input:" << inputs.size() << " is not equal graph inputs:" << input_nodes.size();
}
for (size_t i = 0; i < inputs.size(); ++i) {
auto tensor = inputs[i];
MS_EXCEPTION_IF_NULL(tensor);
auto input_node = input_nodes[i];
MS_EXCEPTION_IF_NULL(input_node);
if (input_node->isa<Parameter>() && AnfAlgo::OutputAddrExist(input_node, 0)) {
auto pk_node = input_node->cast<ParameterPtr>();
auto device_address = AnfAlgo::GetMutableOutputAddr(pk_node, 0);
auto tensor_address = std::dynamic_pointer_cast<device::DeviceAddress>(tensor->device_address());
bool need_sync = false;
if (ms_context->get_param<bool>(MS_CTX_ENABLE_PYNATIVE_INFER)) {
if (tensor_address == nullptr || tensor_address != device_address) {
need_sync = true;
}
} else if (tensor->NeedSyncHostToDevice() || tensor_address == nullptr) {
need_sync = true;
} else if (tensor_address != device_address) {
if (tensor_address->DeviceType() == device_address->DeviceType()) {
AnfAlgo::SetOutputAddr(tensor_address, 0, pk_node.get());
} else {
need_sync = true;
}
}
if (need_sync) {
if (AnfAlgo::IsParameterWeight(input_node->cast<ParameterPtr>())) {
tensor->set_device_address(device_address);
}
MS_EXCEPTION_IF_NULL(device_address);
if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(pk_node, 0),
LongToSize(tensor->data().nbytes()), tensor->data_type(),
tensor->data_c())) {
MS_LOG(EXCEPTION) << "SyncHostToDevice failed.";
}
}
}
tensor->set_sync_status(kNoNeedSync);
}
}
void GPUSession::Execute(const std::shared_ptr<KernelGraph> &kernel_graph) const {
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
MS_EXCEPTION_IF_NULL(runtime_instance);
if (!runtime_instance->Run(kernel_graph.get(), false)) {
MS_LOG(EXCEPTION) << "GPU execute graph failed!";
}
}
GraphId GPUSession::CompileGraphImpl(const AnfNodePtrList &lst, const AnfNodePtrList &outputs) {
// Construct graph, if successfully, graph_sum_ + 1
auto graph_id = graph_sum_;
auto graph = ConstructKernelGraph(lst, outputs);
MS_EXCEPTION_IF_NULL(graph);
// Prepare ms context info for dump .pb graph
auto context_ptr = MsContext::GetInstance();
MS_EXCEPTION_IF_NULL(context_ptr);
bool save_graphs = context_ptr->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG);
// Dump .pb graph before graph optimization
if (save_graphs) {
DumpIRProto(graph, "before_opt_" + std::to_string(graph_id));
}
// Graph optimization irrelevant to device data format
Optimize(graph);
// Select kernel build info
SelectKernel(graph);
// Graph optimization relevant to device data format
HardwareOptimize(graph);
// Graph kernel fusion optimization
GraphKernelOptimize(graph);
// Dump .pb graph after graph optimization
if (save_graphs) {
DumpIRProto(graph, "after_opt_" + std::to_string(graph_id));
}
#if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU))
// Assign parameter keys.
AssignParamKey(graph);
#endif
// Start gpu kernel runtime
StartKernelRT();
// Assign CUDA streams
AssignStream(graph);
// Hide NopOp from execution graph
opt::HideNopNode(graph.get());
// Build kernel if node is cnode
BuildKernel(graph);
// Set graph execution order before memory alloc, ensure that memory alloc is according to the reorder graph
auto execution_order = graph->execution_order();
Reorder(&execution_order);
graph->set_execution_order(execution_order);
// Get summary nodes.
SetSummaryNodes(graph.get());
// Remove NopOp from execution graph
opt::RemoveNopNode(graph.get());
// Set graph manager.
MS_EXCEPTION_IF_NULL(context_);
FuncGraphManagerPtr manager = MakeManager({graph});
context_->AddManager(manager);
if (manager) {
manager->AddFuncGraph(graph);
graph->set_manager(manager);
}
// Alloc memory, including static memory and dynamic memory
AllocateMemory(graph.get());
return graph_id;
}
void GPUSession::RunGraphImpl(const GraphId &graph_id, const std::vector<tensor::TensorPtr> &inputs,
VectorRef *outputs) {
auto &kernel_graph = graphs_[graph_id];
// Load input data from user input
LoadInputData(kernel_graph, inputs);
PreIterationDbg(kernel_graph);
#if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU))
// Initialize parameter server
InitPSParamAndOptim(kernel_graph, inputs);
#endif
MS_EXCEPTION_IF_NULL(kernel_graph);
Execute(kernel_graph);
PostLoadTensor(kernel_graph);
// Summary
auto context_ptr = MsContext::GetInstance();
MS_EXCEPTION_IF_NULL(context_ptr);
if (context_ptr->get_param<bool>(MS_CTX_ENABLE_GPU_SUMMARY)) {
Summary(kernel_graph.get());
}
PostIterationDbg(kernel_graph);
}
void GPUSession::BuildOpImpl(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
const std::vector<tensor::TensorPtr> &input_tensors,
const std::vector<int> &tensors_mask) {
// Check if the graph cache exists.
if (run_op_graphs_.find(graph_info) != run_op_graphs_.end()) {
return;
}
// Prepare the graph
auto kernel_graph = ConstructSingleOpGraph(op_run_info, input_tensors, tensors_mask);
MS_EXCEPTION_IF_NULL(kernel_graph);
SelectKernel(kernel_graph);
StartKernelRT();
// Hide NopOp from execution graph
opt::HideNopNode(kernel_graph.get());
BuildKernel(kernel_graph);
run_op_graphs_[graph_info] = kernel_graph;
}
void GPUSession::RunOpImpl(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
const std::vector<tensor::TensorPtr> &input_tensors, VectorRef *outputs) {
auto kernel_graph = run_op_graphs_[graph_info];
MS_EXCEPTION_IF_NULL(kernel_graph);
// Remove NopOp from execution graph
opt::RemoveNopNode(kernel_graph.get());
RunOpAllocateMemory(op_run_info.value, input_tensors, kernel_graph.get());
// Execute the computation
LoadInputData(kernel_graph, input_tensors);
Execute(kernel_graph);
// Fetch outputs
UpdateOutputs(kernel_graph, outputs, input_tensors);
RunOpClearMemory(kernel_graph.get());
}
void GPUSession::Dump(const std::shared_ptr<KernelGraph> &kernel_graph) const {
if (debugger_->DebuggerBackendEnabled()) {
MS_EXCEPTION_IF_NULL(kernel_graph);
E2eDumpUtil::DumpData(kernel_graph.get(), device_id_, debugger_.get());
} else {
DumpJsonParser::GetInstance().UpdateDumpIter();
}
}
bool GPUSession::DumpDataEnabledIteration() const {
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
MS_EXCEPTION_IF_NULL(runtime_instance);
return runtime_instance->DumpDataEnabledIteration();
}
void GPUSession::PreIterationDbg(const std::shared_ptr<KernelGraph> &kernel_graph) const {
if (debugger_) {
debugger_->PreExecute(kernel_graph);
}
PreLoadTensor(kernel_graph);
}
void GPUSession::PostIterationDbg(const std::shared_ptr<KernelGraph> &kernel_graph) const {
bool dump_enabled = DumpDataEnabledIteration();
// debug used for dump
if (debugger_ && dump_enabled) {
Dump(kernel_graph);
} else {
DumpJsonParser::GetInstance().UpdateDumpIter();
}
if (debugger_) {
debugger_->PostExecute();
}
}
void GPUSession::PreLoadTensor(const std::shared_ptr<KernelGraph> &kernel_graph) const {
// check the dump_enabled and dataset_sink_mode
bool dump_enabled = DumpDataEnabledIteration();
auto context_ptr = MsContext::GetInstance();
MS_EXCEPTION_IF_NULL(context_ptr);
if (dump_enabled && ConfigManager::GetInstance().dataset_mode() == DS_SINK_MODE) {
MS_EXCEPTION(NotSupportError) << "Don't support set dataset_sink_mode to True when using e2e_dump";
}
if (!(debugger_ && (debugger_->debugger_enabled() || dump_enabled))) {
return;
}
MS_EXCEPTION_IF_NULL(kernel_graph);
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
MS_EXCEPTION_IF_NULL(runtime_instance);
DebugServices *debug_services = debugger_->debug_services();
TensorLoader *tensor_loader = debug_services->tensor_loader();
tensor_loader->EmptyTensor();
uint32_t iter_num = tensor_loader->GetIterNum();
tensor_loader->set_iter_num(++iter_num);
}
void GPUSession::PostLoadTensor(const std::shared_ptr<KernelGraph> &kernel_graph) const {
bool dump_enabled = DumpDataEnabledIteration();
if (!(debugger_ && (debugger_->debugger_enabled() || dump_enabled))) {
return;
}
MS_EXCEPTION_IF_NULL(kernel_graph);
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
MS_EXCEPTION_IF_NULL(runtime_instance);
DebugServices *debug_services = debugger_->debug_services();
TensorLoader *tensor_loader = debug_services->tensor_loader();
tensor_loader->EmptyPrevTensor();
}
} // namespace gpu
} // namespace session
} // namespace mindspore