You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/ccsrc/runtime/device/gpu/gpu_bucket.cc

185 lines
6.8 KiB

/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "runtime/device/gpu/gpu_bucket.h"
#include <cuda_runtime_api.h>
#include <nccl.h>
#include <vector>
#include <memory>
#include "abstract/utils.h"
#include "runtime/device/gpu/gpu_event.h"
#include "runtime/device/gpu/gpu_memory_allocator.h"
#include "runtime/device/gpu/gpu_device_manager.h"
#include "runtime/device/kernel_runtime_manager.h"
#include "runtime/device/gpu/distribution/collective_init.h"
#include "runtime/device/gpu/gpu_launch_mul.h"
#include "backend/kernel_compiler/gpu/nccl/nccl_gpu_kernel.h"
#include "runtime/device/gpu/gpu_common.h"
namespace {
const size_t kCommunicationMemAlignSize = 16;
size_t AlignMemorySize(size_t size) {
if (size == 0) {
return kCommunicationMemAlignSize;
}
return ((size + kCommunicationMemAlignSize - 1) / kCommunicationMemAlignSize) * kCommunicationMemAlignSize;
}
} // namespace
namespace mindspore::device::gpu {
GPUBucket::GPUBucket(uint32_t id, uint32_t bucket_size) : Bucket(id, bucket_size), collective_handle_(nullptr) {
group_ = kNcclWorldGroup;
}
void GPUBucket::AllocateAllReduceAddr() {
MS_LOG(INFO) << "start";
if (grad_tensor_list_.size() != bucket_size_) {
MS_LOG(EXCEPTION) << "grad tensor list size:" << grad_tensor_list_.size()
<< " is not equal to bucket size:" << bucket_size_;
}
auto total_size = 0;
std::vector<size_t> size_list;
for (auto &tensor : grad_tensor_list_) {
MS_EXCEPTION_IF_NULL(tensor);
tensor_type_list_.emplace_back(tensor->data_type());
DeviceAddressPtr device_address = std::dynamic_pointer_cast<DeviceAddress>(tensor->device_address());
MS_EXCEPTION_IF_NULL(device_address);
auto origin_size = device_address->GetSize();
auto align_size = AlignMemorySize(origin_size);
size_list.emplace_back(origin_size);
align_size_list_.emplace_back(align_size);
total_size += align_size;
memcpy_input_addrs_.emplace_back(
std::make_shared<kernel::Address>(static_cast<uint8_t *>(device_address->GetMutablePtr()), origin_size));
}
total_size_ = total_size;
ar_input_addr_ = static_cast<uint8_t *>(GPUMemoryAllocator::GetInstance().AllocTensorMem(total_size));
ar_output_addr_ = static_cast<uint8_t *>(GPUMemoryAllocator::GetInstance().AllocTensorMem(total_size));
uint8_t *memcpy_output = ar_input_addr_;
for (size_t i = 0; i < bucket_size_; ++i) {
memcpy_output_addrs_.emplace_back(std::make_shared<kernel::Address>(memcpy_output, size_list[i]));
memcpy_output += align_size_list_[i];
}
MS_LOG(INFO) << "end";
}
void GPUBucket::FreeDeviceMem(void *dev_ptr) { GPUMemoryAllocator::GetInstance().FreeTensorMem(dev_ptr); }
void GPUBucket::FreeAllDeviceMem() {
MS_LOG(INFO) << "start";
if (ar_input_addr_ != nullptr) {
FreeDeviceMem(ar_input_addr_);
ar_input_addr_ = nullptr;
}
if (ar_output_addr_ != nullptr) {
FreeDeviceMem(ar_output_addr_);
ar_output_addr_ = nullptr;
}
// clear launch mul device memory
if (launch_kernel != nullptr) {
launch_kernel->FreeLaunchDeviceMem();
}
MS_LOG(INFO) << "end";
}
void GPUBucket::CopyTensorToContiguousMemory() {
MS_LOG(INFO) << "start";
MS_EXCEPTION_IF_NULL(compute_stream_);
// Clean allreduce input
CHECK_CUDA_RET_WITH_EXCEPT_NOTRACE(
cudaMemsetAsync(ar_input_addr_, 0, total_size_, static_cast<cudaStream_t>(compute_stream_)),
"Call cudaMemsetAsync failed");
for (size_t i = 0; i < bucket_size_; ++i) {
MS_EXCEPTION_IF_NULL(memcpy_output_addrs_[i]);
MS_EXCEPTION_IF_NULL(memcpy_input_addrs_[i]);
if (!GPUDeviceManager::GetInstance().CopyDeviceMemToDeviceAsync(memcpy_output_addrs_[i]->addr,
memcpy_input_addrs_[i]->addr,
memcpy_output_addrs_[i]->size, compute_stream_)) {
MS_LOG(EXCEPTION) << "Copy memory failed";
}
}
MS_LOG(INFO) << "end";
}
void GPUBucket::LaunchAllReduce() {
MS_LOG(INFO) << "start";
collective_handle_ = device::gpu::CollectiveInitializer::instance().collective_handle();
auto all_reduce_funcptr =
reinterpret_cast<kernel::AllReduce>(dlsym(const_cast<void *>(collective_handle_), "AllReduce"));
MS_EXCEPTION_IF_NULL(all_reduce_funcptr);
MS_EXCEPTION_IF_NULL(stream_);
if (tensor_type_list_.empty()) {
MS_LOG(EXCEPTION) << "No tesnor type found";
}
auto type = tensor_type_list_[0];
if (std::any_of(tensor_type_list_.begin(), tensor_type_list_.end(),
[&type](TypeId tensor_type) { return type != tensor_type; })) {
MS_LOG(EXCEPTION) << "AllReduce input have different dtype";
}
auto type_size = abstract::TypeIdSize(type);
if (type_size == 0) {
MS_LOG(EXCEPTION) << "Invalid type:" << type;
}
// typeid to nccl_data_type
auto nccl_data_type_iter = kernel::kNcclDtypeMap.find(TypeIdLabel(type));
if (nccl_data_type_iter == kernel::kNcclDtypeMap.end()) {
MS_LOG(EXCEPTION) << "Invalid type:" << type;
}
auto nccl_result =
(*all_reduce_funcptr)(ar_input_addr_, ar_output_addr_, total_size_ / type_size, nccl_data_type_iter->second,
ncclRedOp_t::ncclSum, static_cast<cudaStream_t>(stream_), group_);
if (nccl_result != ncclSuccess) {
MS_LOG(EXCEPTION) << "AllReduce failed, ret:" << nccl_result;
}
MS_LOG(INFO) << "end";
}
std::shared_ptr<LaunchKernel> GPUBucket::CreateLaunchKernel() {
if (tensor_type_list_.empty()) {
MS_LOG(ERROR) << "tensor_type_list_ is empty";
}
auto launch_mul = std::make_shared<GPULaunchMul>(stream_, tensor_type_list_[0], total_size_, ar_output_addr_);
MS_EXCEPTION_IF_NULL(launch_mul);
return launch_mul;
}
void GPUBucket::Init() {
pre_event_ = std::make_shared<GpuEvent>();
post_event_ = std::make_shared<GpuEvent>();
auto kernel_runtime = KernelRuntimeManager::Instance().GetCurrentKernelRuntime();
MS_EXCEPTION_IF_NULL(kernel_runtime);
stream_ = kernel_runtime->communication_stream();
compute_stream_ = kernel_runtime->compute_stream();
MS_EXCEPTION_IF_NULL(pre_event_);
MS_EXCEPTION_IF_NULL(post_event_);
pre_event_->set_record_stream(compute_stream_);
pre_event_->set_wait_stream(stream_);
post_event_->set_record_stream(stream_);
post_event_->set_wait_stream(compute_stream_);
}
} // namespace mindspore::device::gpu