You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/optimizer/test_debug_location.py

173 lines
5.8 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.nn as nn
import pytest
from mindspore import context
from mindspore import Tensor, Parameter
from mindspore.nn.wrap.cell_wrapper import WithLossCell
from mindspore.train.loss_scale_manager import FixedLossScaleManager, DynamicLossScaleManager
from mindspore.nn.wrap.loss_scale import TrainOneStepWithLossScaleCell
from mindspore.ops import operations as P
from mindspore.nn.optim import Momentum
from mindspore.ops import functional as F
from mindspore.common import dtype as mstype
from mindspore.train import Model
from ....dataset_mock import MindData
from mindspore.nn.optim import Lamb
from mindspore.ops._utils import _get_broadcast_shape
from mindspore.ops.primitive import Primitive, PrimitiveWithInfer, prim_attr_register
from mindspore.ops._grad.grad_base import bprop_getters
from mindspore.ops._grad.grad_math_ops import binop_grad_common
context.set_context(mode=context.GRAPH_MODE)
class MockNeg(PrimitiveWithInfer):
@prim_attr_register
def __init__(self):
"""init MockNeg"""
self.init_prim_io_names(inputs=['x'], outputs=['y'])
def infer_shape(self, input_x):
return input_x
def infer_dtype(self, input_x):
raise TypeError("InferError")
return input_x
class MockSub(PrimitiveWithInfer):
@prim_attr_register
def __init__(self):
"""init MockSub"""
self.init_prim_io_names(inputs=['x', 'y'], outputs=['output'])
def infer_shape(self, x_shape, y_shape):
return _get_broadcast_shape(x_shape, y_shape)
def infer_dtype(self, x_dtype, y_dtype):
return x_dtype
@bprop_getters.register(MockSub)
def get_bprop_mock_sub(self):
"""Grad definition for `MockSub` operation."""
neg_func = MockNeg()
def bprop(x, y, out, dout):
return binop_grad_common(x, y, dout, neg_func(dout))
return bprop
class Net(nn.Cell):
def __init__(self, in_features, out_features):
super(Net, self).__init__()
self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight")
self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias")
self.matmul = P.MatMul()
self.add = P.TensorAdd()
def construct(self, input):
output = self.add(self.matmul(input, self.weight), self.bias)
return output
class NetFP16(nn.Cell):
def __init__(self, in_features, out_features):
super(NetFP16, self).__init__()
self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight")
self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias")
self.matmul = P.MatMul()
self.add = P.TensorAdd()
self.cast = P.Cast()
def construct(self, input):
output = self.cast(self.add(self.matmul(self.cast(input, mstype.float16), self.cast(self.weight, mstype.float16)),
self.cast(self.bias, mstype.float16)), mstype.float32)
return output
def get_axis(x):
shape = F.shape(x)
length = F.tuple_len(shape)
perm = F.make_range(0, length)
return perm
class MSELoss(nn.Cell):
def __init__(self):
super(MSELoss, self).__init__()
self.reduce_sum = P.ReduceSum()
self.square = P.Square()
self.reduce_mean = P.ReduceMean()
self.sub = MockSub()
def construct(self, data, label):
diff = self.sub(data, label)
return self.reduce_mean(self.square(diff), get_axis(diff))
class NegCell(nn.Cell):
def __init__(self):
super(NegCell, self).__init__()
self.neg = MockNeg()
def construct(self, x):
return self.neg(x)
class Net3(nn.Cell):
def __init__(self):
super().__init__()
self.tuple = (NegCell(), nn.ReLU())
def construct(self, x):
for op in self.tuple:
x = op(x)
return x
def test_op_forward_infererror():
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
input_me = Tensor(input_np)
net = Net3()
with pytest.raises(TypeError) as e:
net(input_me)
class SequenceNet(nn.Cell):
def __init__(self):
super().__init__()
self.seq = nn.SequentialCell([nn.AvgPool2d(3, 1), nn.ReLU(), nn.Flatten()])
def construct(self, x):
x = self.seq(x) + bbb
return x
def test_sequential_resolve_error():
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
input_me = Tensor(input_np)
net = SequenceNet()
with pytest.raises(RuntimeError) as e:
net(input_me)
def test_compile_grad_error():
inputs = Tensor(np.ones([16, 16]).astype(np.float32))
label = Tensor(np.zeros([16, 16]).astype(np.float32))
lr = Tensor(np.ones([1], np.float32) * 0.1)
net = NetFP16(16, 16)
loss = MSELoss()
optimizer = Momentum(net.trainable_params(), learning_rate=lr, momentum=0.9)
net_with_loss = WithLossCell(net, loss)
scale_manager = DynamicLossScaleManager()
update_cell = scale_manager.get_update_cell()
train_network = TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell = update_cell)
train_network.set_train()
with pytest.raises(TypeError) as e:
train_network(inputs, label)
print (e)