You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
78 lines
2.7 KiB
78 lines
2.7 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import mindspore.context as context
|
|
from mindspore import Tensor
|
|
from mindspore.nn import Cell
|
|
import mindspore.ops.operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
|
|
|
|
|
|
class Net(Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.layernorm = P.LayerNorm(1, 1)
|
|
|
|
def construct(self, x, y, z):
|
|
return self.layernorm(x, y, z)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_basic():
|
|
input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
|
|
gamma = np.random.normal(0, 1, [3, 4, 3]).astype(np.float32)
|
|
beta = np.random.normal(0, 1, [3, 4, 3]).astype(np.float32)
|
|
shape_x = [2, 3, 4, 3]
|
|
begin_norm_axis = 1
|
|
|
|
in_rank = len(shape_x)
|
|
if begin_norm_axis < 0:
|
|
norm_axis = begin_norm_axis + in_rank
|
|
else:
|
|
norm_axis = begin_norm_axis
|
|
norm_axes = tuple(range(norm_axis, in_rank))
|
|
mean = np.mean(input_x, axis=norm_axes, keepdims=True)
|
|
mean_b = np.broadcast_to(mean, shape_x)
|
|
diff = input_x - mean_b
|
|
square = np.square(diff)
|
|
smean = np.mean(square, axis=norm_axes, keepdims=True)
|
|
smean_b = np.broadcast_to(smean, shape_x)
|
|
meps = smean_b + 1e-5
|
|
logs = np.log(meps)
|
|
mul = logs * (-0.5)
|
|
rsqrt = np.exp(mul)
|
|
out = diff * rsqrt
|
|
bn = out * gamma + beta
|
|
expect = (bn, mean, smean)
|
|
|
|
net = Net()
|
|
|
|
net_result = net(Tensor(input_x), Tensor(gamma), Tensor(beta))
|
|
if isinstance(net_result, tuple) and len(net_result) == 3:
|
|
result = (net_result[0].asnumpy(), net_result[1].asnumpy(), net_result[2].asnumpy())
|
|
res0 = np.allclose(expect[0], result[0], rtol=1.e-4, atol=1.e-4, equal_nan=True)
|
|
assert res0
|
|
res1 = np.allclose(expect[1], result[1], rtol=1.e-4, atol=1.e-7, equal_nan=True)
|
|
assert res1
|
|
res2 = np.allclose(expect[2], result[2], rtol=1.e-4, atol=1.e-7, equal_nan=True)
|
|
assert res2
|
|
else:
|
|
assert False
|