You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/ccsrc/ps/internal/worker.h

158 lines
7.1 KiB

/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PS_INTERNAL_WORKER_H_
#define MINDSPORE_CCSRC_PS_INTERNAL_WORKER_H_
#include <utility>
#include <memory>
#include <vector>
#include <string>
#include <numeric>
#include <functional>
#include <algorithm>
#include <map>
#include <mutex>
#include <unordered_set>
#include <unordered_map>
#include "utils/log_adapter.h"
#include "ir/tensor.h"
#include "ps/util.h"
#include "ps/internal/constants.h"
#include "utils/shape_utils.h"
#include "ps/ps_cache/ps_data/ps_data_prefetch.h"
#include "ps/core/worker_node.h"
#include "ps/embedding_table_shard_metadata.h"
#include "proto/comm.pb.h"
#include "proto/ps.pb.h"
#include "ps/ps_context.h"
namespace mindspore {
namespace ps {
namespace internal {
class Worker {
public:
static Worker &GetInstance() {
static Worker instance;
return instance;
}
using Callback = std::function<void()>;
using PartitionEmbeddingMessages = std::vector<std::pair<bool, EmbeddingTableLookup>>;
using PartitionKVMessages = std::vector<std::pair<bool, KVMessage>>;
using EmbeddingPartitioner = std::function<void(
const EmbeddingTableLookup &send, PartitionEmbeddingMessages *partition, const std::map<int64_t, int64_t> &attrs)>;
using KVPartitioner =
std::function<void(const KVMessage &send, PartitionKVMessages *partition, const std::map<int64_t, int64_t> &attrs)>;
void Run();
void Push(const std::vector<size_t> &keys, std::vector<uintptr_t> addrs, const ShapeVector &sizes);
void Pull(const size_t key, void *dev_addr, const size_t size);
size_t SetParamKey(const std::string &param_name);
size_t GetParamKey(const std::string &param_name);
void SetParamInitInServer(const std::string &param_name, bool init_in_server);
bool GetParamInitInServer(const std::string &param_name);
void SetKeyOptimId(size_t key, const std::string &optimizer_name);
void SetOptimInputShapes(size_t key, const ShapeVector &shape);
void AddEmbeddingTable(const Key &key, const size_t &row_count);
void InitPSEmbeddingTable(const size_t &key, const std::vector<size_t> &input_shape,
const std::vector<size_t> &indices_shape, const std::vector<size_t> &output_shape);
void InitPSParamAndOptim(const AnfNodePtr &input_node, const tensor::TensorPtr &tensor);
void DoPSEmbeddingLookup(const Key &key, const std::vector<int> &lookup_ids, std::vector<float> *lookup_result,
int64_t cmd);
void UpdateEmbeddingTable(const std::vector<Key> &keys, const std::vector<int> &lookup_ids,
const std::vector<float> &vals);
bool running() { return running_; }
void Finalize();
private:
Worker() : running_(false), key_cnt_(0) {}
~Worker() = default;
Worker(const Worker &) = delete;
Worker &operator=(const Worker &) = delete;
void Initialize();
bool IsKeyInit(const size_t key);
void AddKeyToServerId(const Key &key);
void AddKeyByHashMod(const Key &key);
void InitPSOptimId(const size_t param_key);
void InitPSOptimInputShapes(const size_t key);
void InitPSParamData(const std::vector<size_t> &keys, void *origin_addr, size_t size);
bool IsReadyForPush(const Key &key);
bool IsReadyForPull(const Key &key);
void PrepareSparseGradient(const size_t begin, const size_t end, const std::unordered_set<int> &distinct_ids,
const std::vector<std::pair<int, float *>> &indice_to_grads, const int *all_indice,
const size_t segment_size, float *gradient, int *indices);
void BuildSparseValue(const std::vector<int> &lengths, const size_t grad_index, const size_t indice_index,
const float *original_data, const float *grads, int *indices, std::vector<float> *reduced_data);
void PushData(const std::vector<Key> &keys, const std::vector<float> &vals, const std::vector<int> &lens = {},
int command = 0, int64_t priority = 0);
void PushSparseData(const std::vector<Key> &keys, const std::vector<float> &vals, const std::vector<int> &lens,
size_t grad_index, size_t indice_index, size_t first_dim_size, size_t outer_dim_size);
void PullData(const std::vector<Key> &keys, std::vector<float> *vals, std::vector<int> *lens = nullptr, int cmd = 0,
int64_t priority = 0);
void LookupIdPartitioner(const EmbeddingTableLookup &send, PartitionEmbeddingMessages *partition,
const std::map<int64_t, int64_t> &attrs);
void SparsePartitioner(const KVMessage &send, PartitionKVMessages *partition,
const std::map<int64_t, int64_t> &attrs);
void RoundRobinPartitioner(const KVMessage &send, PartitionKVMessages *partition,
const std::map<int64_t, int64_t> &attrs);
void WorkerInitEmbeddingPartitioner(const KVMessage &send, std::vector<std::pair<bool, KVMessage>> *partition,
const std::map<int64_t, int64_t> &attrs);
void UpdateEmbeddingPartitioner(const KVMessage &send, PartitionKVMessages *partition,
const std::map<int64_t, int64_t> &attrs);
void BroadcastPartitioner(const KVMessage &send, PartitionKVMessages *partition,
const std::map<int64_t, int64_t> &attrs);
void SendForPush(int cmd, const KVMessage &send, const KVPartitioner &partitioner,
const std::map<int64_t, int64_t> &attrs);
void SendForPull(int cmd, const KVMessage &send, const KVPartitioner &partitioner,
const std::map<int64_t, int64_t> &attrs, std::vector<float> *vals, std::vector<int> *lens);
int64_t server_num_;
bool running_;
std::mutex running_mutex_;
size_t key_cnt_;
std::map<std::string, size_t> param_to_key_;
std::map<size_t, bool> init_keys_;
std::map<size_t, int64_t> key_to_optimId_;
std::map<size_t, std::vector<ShapeVector>> key_to_optim_shapes_;
std::map<std::string, bool> param_to_init_in_server_;
core::WorkerNode worker_node_;
EmbeddingPartitioner lookup_partitioner_;
KVPartitioner sparse_partitioner_;
KVPartitioner round_robin_partitioner_;
KVPartitioner worker_init_embedding_partitioner_;
KVPartitioner update_embedding_partitioner_;
KVPartitioner broadcast_partitioner_;
std::unordered_map<Key, int64_t> key_to_server_id_;
std::unordered_map<Key, size_t> embedding_row_cnt_;
std::unordered_map<Key, std::shared_ptr<std::vector<EmbeddingTableShardMetadata>>> embedding_table_ranges_;
};
static Worker &worker = Worker::GetInstance();
} // namespace internal
} // namespace ps
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PS_INTERNAL_WORKER_H_