You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/recommend/wide_and_deep
mindspore-ci-bot 6fd5323356
!4458 change wide&deep training batchsize
5 years ago
..
script change wide&deep train batchsize 5 years ago
src add field in stra ckpt 5 years ago
README.md Add synthetic data generate process 5 years ago
eval.py modezoo wide&deep run clusters 5 years ago
train.py modezoo wide&deep run clusters 5 years ago
train_and_eval.py modezoo wide&deep run clusters 5 years ago
train_and_eval_auto_parallel.py remove to_full_tensor and load_inputs in exexute stage 5 years ago
train_and_eval_distribute.py fix network wide and deep 5 years ago
train_and_eval_parameter_server.py Add parameter server model_zoo case and CI test cases. 5 years ago

README.md

Recommendation Model

Overview

This is an implementation of WideDeep as described in the Wide & Deep Learning for Recommender System paper.

WideDeep model jointly trained wide linear models and deep neural network, which combined the benefits of memorization and generalization for recommender systems.

Requirements

  • Install MindSpore.

  • Download the dataset and convert the dataset to mindrecord, command as follows:

python src/preprocess_data.py  --dense_dim=13 --slot_dim=26 --threshold=100 --train_line_count=45840617 --skip_id_convert=0

Arguments:

  • --data_type {criteo,synthetic}: Currently we support criteo dataset and synthetic dataset.(Default: ./criteo_data/).
  • --data_path : The path of the data file.
  • --dense_dim : The number of your continues fields.
  • --slot_dim : The number of your sparse fields, it can also be called category features.
  • --threshold : Word frequency below this value will be regarded as OOV. It aims to reduce the vocab size.
  • --train_line_count: The number of examples in your dataset.
  • --skip_id_convert: 0 or 1. If set 1, the code will skip the id convert, regarding the original id as the final id.

Dataset

The common used benchmark datasets are used for model training and evaluation.

Generate the synthetic Data

The following command will generate 40 million lines of click data, in the format of "label\tdense_feature[0]\tdense_feature[1]...\tsparse_feature[0]\tsparse_feature[1]...".

mkdir -p syn_data/origin_data
python src/generate_synthetic_data.py --output_file=syn_data/origin_data/train.txt --number_examples=40000000 --dense_dim=13 --slot_dim=51 --vocabulary_size=2000000000 --random_slot_values=0

Arguments:

  • --output_file: The output path of the generated file
  • --label_dim : The label category
  • --number_examples: The row numbers of the generated file
  • --dense_dim : The number of the continue feature.
  • --slot_dim: The number of the category features
  • --vocabulary_size: The vocabulary size of the total dataset
  • --random_slot_values: 0 or 1. If 1, the id is generated by the random. If 0, the id is set by the row_index mod part_size, where part_size is the vocab size for each slot

Preprocess the generated data

python src/preprocess_data.py --data_path=./syn_data/ --data_type=synthetic --dense_dim=13 --slot_dim=51 --threshold=0 --train_line_count=40000000 --skip_id_convert=1

Running Code

Code Structure

The entire code structure is as following:

|--- wide_and_deep/
    train_and_eval.py                  "Entrance of Wide&Deep model training and evaluation"
    eval.py                            "Entrance of Wide&Deep model evaluation"
    train.py                           "Entrance of Wide&Deep model training"
    train_and_eval_multinpu.py         "Entrance of Wide&Deep model data parallel training and evaluation"
    train_and_eval_auto_parallel.py
    train_and_eval_parameter_server.py "Entrance of Wide&Deep model parameter server training and evaluation"
    |--- src/                          "Entrance of training and evaluation"
        config.py                      "Parameters configuration"
        dataset.py                     "Dataset loader class"
        process_data.py                "Process dataset"
        preprocess_data.py             "Pre_process dataset"
        wide_and_deep.py               "Model structure"
        callbacks.py                   "Callback class for training and evaluation"
        generate_synthetic_data.py     "Generate the synthetic data for benchmark"
        metrics.py                     "Metric class"
    |--- script/                       "Run shell dir"
        run_multinpu_train.sh          "Run data parallel"
        run_auto_parallel_train.sh     "Run auto parallel"
        run_parameter_server_train.sh  "Run parameter server"

Train and evaluate model

To train and evaluate the model, command as follows:

python train_and_eval.py

Arguments:

  • --device_target: Device where the code will be implemented (Default: Ascend).
  • --data_path: This should be set to the same directory given to the data_download's data_dir argument.
  • --epochs: Total train epochs.
  • --batch_size: Training batch size.
  • --eval_batch_size: Eval batch size.
  • --field_size: The number of features.
  • --vocab_size The total features of dataset.
  • --emb_dim The dense embedding dimension of sparse feature.
  • --deep_layers_dim The dimension of all deep layers.
  • --deep_layers_act The activation of all deep layers.
  • --dropout_flag Whether do dropout.
  • --keep_prob The rate to keep in dropout layer.
  • --ckpt_pathThe location of the checkpoint file.
  • --eval_file_name : Eval output file.
  • --loss_file_name : Loss output file.
  • --dataset_type : tfrecord/mindrecord/hd5.

To train the model in one device, command as follows:

python train.py

Arguments:

  • --device_target: Device where the code will be implemented (Default: Ascend).
  • --data_path: This should be set to the same directory given to the data_download's data_dir argument.
  • --epochs: Total train epochs.
  • --batch_size: Training batch size.
  • --eval_batch_size: Eval batch size.
  • --field_size: The number of features.
  • --vocab_size The total features of dataset.
  • --emb_dim The dense embedding dimension of sparse feature.
  • --deep_layers_dim The dimension of all deep layers.
  • --deep_layers_act The activation of all deep layers.
  • --dropout_flag Whether do dropout.
  • --keep_prob The rate to keep in dropout layer.
  • --ckpt_pathThe location of the checkpoint file.
  • --eval_file_name : Eval output file.
  • --loss_file_name : Loss output file.
  • --dataset_type : tfrecord/mindrecord/hd5.

To train the model in distributed, command as follows:

# configure environment path before training
bash run_multinpu_train.sh RANK_SIZE EPOCHS DATASET RANK_TABLE_FILE 
# configure environment path before training
bash run_auto_parallel_train.sh RANK_SIZE EPOCHS DATASET RANK_TABLE_FILE 

To train the model in clusters, command as follows:'''

# deploy wide&deep script in clusters
# CLUSTER_CONFIG is a json file, the sample is in script/.
# EXECUTE_PATH is the scripts path after the deploy.
bash deploy_cluster.sh CLUSTER_CONFIG_PATH EXECUTE_PATH

# enter EXECUTE_PATH, and execute start_cluster.sh as follows.
# MODE: "host_device_mix"
bash start_cluster.sh CLUSTER_CONFIG_PATH EPOCH_SIZE VOCAB_SIZE EMB_DIM
                      DATASET ENV_SH RANK_TABLE_FILE MODE

To train and evaluate the model in parameter server mode, command as follows:'''

# SERVER_NUM is the number of parameter servers for this task.
# SCHED_HOST is the IP address of scheduler.
# SCHED_PORT is the port of scheduler.
# The number of workers is the same as RANK_SIZE.
bash run_parameter_server_train.sh RANK_SIZE EPOCHS DATASET RANK_TABLE_FILE SERVER_NUM SCHED_HOST SCHED_PORT

To evaluate the model, command as follows:

python eval.py

Arguments:

  • --device_target: Device where the code will be implemented (Default: Ascend).
  • --data_path: This should be set to the same directory given to the data_download's data_dir argument.
  • --epochs: Total train epochs.
  • --batch_size: Training batch size.
  • --eval_batch_size: Eval batch size.
  • --field_size: The number of features.
  • --vocab_size The total features of dataset.
  • --emb_dim The dense embedding dimension of sparse feature.
  • --deep_layers_dim The dimension of all deep layers.
  • --deep_layers_act The activation of all deep layers.
  • --keep_prob The rate to keep in dropout layer.
  • --ckpt_pathThe location of the checkpoint file.
  • --eval_file_name : Eval output file.
  • --loss_file_name : Loss output file.

There are other arguments about models and training process. Use the --help or -h flag to get a full list of possible arguments with detailed descriptions.