You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/lite/tools/converter/anf_transform.cc

102 lines
4.2 KiB

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/anf_transform.h"
#include <memory>
#include <string>
#include "utils/log_adapter.h"
#include "tools/optimizer/fusion/conv_biasadd_fusion.h"
#include "tools/optimizer/fusion/conv_activation_fusion.h"
#include "tools/optimizer/fusion/conv_tuple_activation_fusion.h"
#include "tools/optimizer/fusion/conv_scale_fusion.h"
#include "tools/optimizer/fusion/conv_bn_fusion.h"
#include "tools/optimizer/fusion/constant_folding_fusion.h"
#include "tools/converter/quantizer/post_training_quantizer.h"
#include "tools/converter/quantizer/quant_cast.h"
#include "tools/converter/quantizer/weight_quantizer.h"
using std::string;
namespace mindspore {
namespace lite {
AnfTransform::AnfTransform() = default;
AnfTransform::~AnfTransform() = default;
FuncGraphPtr AnfTransform::Transform(const FuncGraphPtr &old_graph, const converter::Flags *config) {
MS_ASSERT(nullptr != old_graph);
// fusion const_fold
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>("anf fusion pass manager", false);
pm->AddPass(std::make_shared<opt::ConvBiasaddFusion>());
pm->AddPass(std::make_shared<opt::ConvBatchNormFusion>());
pm->AddPass(std::make_shared<opt::ConvScaleFusion>());
pm->AddPass(std::make_shared<opt::ConvActivationFusion>(true, "conv_relu", schema::PrimitiveType_Activation,
schema::ActivationType_RELU));
pm->AddPass(std::make_shared<opt::ConvActivationFusion>(true, "conv_relu6", schema::PrimitiveType_Activation,
schema::ActivationType_RELU6));
pm->AddPass(std::make_shared<opt::ConvTupleActivationFusion>(
true, "conv_tuple_relu", schema::PrimitiveType_Activation, schema::ActivationType_RELU));
pm->AddPass(std::make_shared<opt::ConvTupleActivationFusion>(
true, "conv_tuple_relu6", schema::PrimitiveType_Activation, schema::ActivationType_RELU6));
pm->AddPass(std::make_shared<opt::ConstFoldPass>());
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(old_graph);
// quant
if (config != nullptr) {
if (config->quantType == schema::QuantType_PostTraining) {
this->mQuantizer = std::make_unique<quant::PostTrainingQuantizer>(new_graph, config->configFile, 8);
if (mQuantizer == nullptr) {
MS_LOG(ERROR) << "New PostTrainingQuantizer failed";
return nullptr;
}
} else if (config->quantType == schema::QuantType_WeightQuant) {
auto bitNum = static_cast<size_t>(std::stoull(config->bitNum));
if (bitNum != quant::UINT8_QUANTIZATION) {
MS_LOG(ERROR) << "Current Only Support 8 bit weight quant";
return nullptr;
}
this->mQuantizer = std::make_unique<quant::WeightQuantizer>(
new_graph, config->quantSize, config->convWeightQuantChannelThreshold, config->bitNum);
if (mQuantizer == nullptr) {
MS_LOG(ERROR) << "New WeightQuantizer failed";
return nullptr;
}
}
}
if (mQuantizer != nullptr) {
mQuantizer->flags = *config;
auto status = mQuantizer->DoQuantize(new_graph);
if (status != RET_OK) {
MS_LOG(ERROR) << "Quant failed " << status;
return nullptr;
}
if (config->quantType == schema::QuantType_PostTraining) {
quant::QuantCast quant_cast;
quant_cast.SetInputDataDType(kNumberTypeFloat32);
status = quant_cast.Run(new_graph);
if (status != RET_OK) {
MS_LOG(ERROR) << "add QuantCast error";
return nullptr;
}
}
}
return new_graph;
}
} // namespace lite
} // namespace mindspore