You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/pynative/test_parser_tensor_assign.py

127 lines
3.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
import mindspore as ms
from mindspore import context
from mindspore.nn import ReLU
from mindspore.nn import Cell
from mindspore.common.tensor import Tensor
from mindspore.ops import operations as P
def setup_module():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_parser_tensor_assign_slice():
class Net(Cell):
def __init__(self, U):
super(Net, self).__init__()
self.relu = ReLU()
self.U = U
def construct(self, x):
x = self.relu(x)
x[..., :2] = U
return x
input_np_x = np.random.rand(4, 4, 4)
input_me_x = Tensor(input_np_x, ms.float32)
U = 1.0
net = Net(U)
out_me = net(input_me_x)
input_np_x[..., :2] = U
assert np.allclose(out_me.asnumpy(), input_np_x, rtol=0.01, atol=0.01)
def test_parser_tensor_assign_slice_002():
class Net(Cell):
def __init__(self, U):
super(Net, self).__init__()
self.relu = ReLU()
self.U = U
def construct(self, x):
x = self.relu(x)
x[::, :, :1] = self.U
return x
input_np_x = np.random.rand(4, 4, 4)
input_me_x = Tensor(input_np_x, ms.float32)
U = 1.0
net = Net(U)
out_me = net(input_me_x)
input_np_x[::, :, :1] = U
assert np.allclose(out_me.asnumpy(), input_np_x, rtol=0.01, atol=0.01)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_parser_tensor_assign_bool():
class Net(Cell):
def __init__(self, U):
super(Net, self).__init__()
self.relu = ReLU()
self.U = U
def construct(self, x, tensorB):
x = self.relu(x)
x[tensorB] = self.U
return x
input_np_x = np.random.rand(4, 4, 4)
input_me_x = Tensor(input_np_x, ms.float32)
numpy_B = np.random.randn(4, 4, 4) > 0
tensor_B = Tensor(numpy_B)
U = np.array([1])
net = Net(Tensor(U))
out_me = net(input_me_x, tensor_B)
input_np_x[numpy_B] = U
assert np.allclose(out_me.asnumpy(), input_np_x, rtol=0.01, atol=0.01)
def test_parser_tensor_assign_bool_002():
class Net(Cell):
def __init__(self, U):
super(Net, self).__init__()
self.relu = ReLU()
self.U = U
self.fill = P.Fill()
def construct(self, x, tensorB):
x = self.relu(x)
x[tensorB] = self.U
return x
input_np_x = np.random.rand(2, 2, 2)
input_me_x = Tensor(input_np_x, ms.float32)
numpy_B = np.random.randn(2, 2, 2) > 0
tensor_B = Tensor(numpy_B)
U = 1
net = Net(U)
out_me = net(input_me_x, tensor_B)
input_np_x[numpy_B] = U
assert np.allclose(out_me.asnumpy(), input_np_x, rtol=0.01, atol=0.01)