You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
65 lines
2.3 KiB
65 lines
2.3 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""export checkpoint file into air models"""
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor, context
|
|
from mindspore.train.serialization import load_checkpoint, export
|
|
|
|
from src.gat import GAT
|
|
from src.config import GatConfig
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='GAT_export')
|
|
parser.add_argument('--ckpt_file', type=str, default='./ckpts/gat.ckpt', help='GAT ckpt file.')
|
|
parser.add_argument('--output_file', type=str, default='gat.air', help='GAT output air name.')
|
|
parser.add_argument('--dataset', type=str, default='cora', help='GAT dataset name.')
|
|
args_opt = parser.parse_args()
|
|
|
|
if args_opt.dataset == "citeseer":
|
|
feature_size = [1, 3312, 3703]
|
|
biases_size = [1, 3312, 3312]
|
|
num_classes = 6
|
|
else:
|
|
feature_size = [1, 2708, 1433]
|
|
biases_size = [1, 2708, 2708]
|
|
num_classes = 7
|
|
|
|
hid_units = GatConfig.hid_units
|
|
n_heads = GatConfig.n_heads
|
|
|
|
feature = np.random.uniform(0.0, 1.0, size=feature_size).astype(np.float32)
|
|
biases = np.random.uniform(0.0, 1.0, size=biases_size).astype(np.float64)
|
|
|
|
feature_size = feature.shape[2]
|
|
num_nodes = feature.shape[1]
|
|
|
|
gat_net = GAT(feature_size,
|
|
num_classes,
|
|
num_nodes,
|
|
hid_units,
|
|
n_heads,
|
|
attn_drop=0.0,
|
|
ftr_drop=0.0)
|
|
|
|
gat_net.set_train(False)
|
|
load_checkpoint(args_opt.ckpt_file, net=gat_net)
|
|
gat_net.add_flags_recursive(fp16=True)
|
|
|
|
export(gat_net, Tensor(feature), Tensor(biases), file_name=args_opt.output_file, file_format="AIR")
|