You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/lite/tools/converter/anf_transform.cc

384 lines
16 KiB

/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/anf_transform.h"
#include <memory>
#include <string>
#include "src/common/log_adapter.h"
#include "tools/optimizer/common/gllo_utils.h"
#include "mindspore/core/ir/primitive.h"
#include "tools/optimizer/fusion/conv_biasadd_fusion.h"
#include "tools/optimizer/fusion/conv_activation_fusion.h"
#include "tools/optimizer/fusion/conv_tuple_activation_fusion.h"
#include "tools/optimizer/fusion/conv_scale_fusion.h"
#include "tools/optimizer/fusion/conv_bn_fusion.h"
#include "tools/optimizer/fusion/conv_tuplegetitem_fusion.h"
#include "tools/optimizer/fusion/constant_folding_fusion.h"
#include "tools/optimizer/fusion/norm_fusion.h"
#include "tools/optimizer/fusion/batchmatmul_fusion.h"
#include "tools/optimizer/fusion/sigmoid_mul_fusion.h"
#include "tools/optimizer/fusion/conv_conv_fusion.h"
#include "tools/optimizer/fusion/tflite_lstm_cell_fusion.h"
#include "tools/optimizer/fusion/tf_lstm_cell_fusion.h"
#include "tools/optimizer/fusion/tf_bidirection_gru_fusion.h"
#include "tools/optimizer/fusion/tf_bidirection_gru_cf_fusion.h"
#include "tools/optimizer/graph/primitive_adjust_pass.h"
#include "tools/optimizer/graph/mindir_adjust_pass.h"
#include "tools/optimizer/graph/redundant_op_remove_pass.h"
#include "tools/optimizer/graph/weight_format_hardcode_pass.h"
#include "tools/optimizer/graph/weight_format_transform_pass.h"
#include "tools/optimizer/graph/clip_convert_activation_pass.h"
#include "tools/optimizer/graph/group_depthwise_op_convert_pass.h"
#include "tools/optimizer/graph/tflite_inputs_adjust_pass.h"
#include "tools/optimizer/graph/onnx_inputs_adjust_pass.h"
#include "tools/optimizer/graph/update_conv2d_param_pass.h"
#include "tools/optimizer/graph/unused_node_remove_pass.h"
#include "tools/optimizer/graph/unused_cast_node_remove_pass.h"
#include "tools/optimizer/graph/unused_transpose_node_remove_pass.h"
#include "tools/optimizer/graph/infershape_pass.h"
#include "tools/optimizer/graph/slice_prepose_pass.h"
#include "tools/optimizer/graph/while_pass.h"
#include "tools/optimizer/graph/if_pass.h"
#include "tools/optimizer/graph/functionalize_control_op_pass.h"
#include "tools/optimizer/graph/inputs_adjust_pass.h"
#include "tools/converter/quantizer/post_training_quantizer.h"
#include "tools/converter/quantizer/quant_cast.h"
#include "tools/converter/quantizer/weight_quantizer.h"
using std::string;
namespace mindspore::lite {
AnfTransform::AnfTransform() = default;
AnfTransform::~AnfTransform() = default;
int AnfTransform::AddFusionPass(const std::shared_ptr<opt::GraphOptimizer> &optimizer, const converter::Flags *config) {
auto fusion_pm = std::make_shared<opt::PassManager>("anf fusion pass manager", false);
// for now - training is not supporting fuse operations
if (!config->trainModel) {
// remove quantdtype when awaretraining
fusion_pm->AddPass(std::make_shared<opt::ConvBiasaddFusion>());
auto conv_bn_pass = std::make_shared<opt::ConvBatchNormFusion>();
conv_bn_pass->SetFmkType(config->fmk);
fusion_pm->AddPass(conv_bn_pass);
auto conv_scale_pass = std::make_shared<opt::ConvScaleFusion>();
conv_scale_pass->SetFmkType(config->fmk);
fusion_pm->AddPass(conv_scale_pass);
fusion_pm->AddPass(std::make_shared<opt::TfNormFusion>());
fusion_pm->AddPass(std::make_shared<opt::OnnxLayerNormFusion>());
fusion_pm->AddPass(std::make_shared<opt::BatchMatMulFusion>());
fusion_pm->AddPass(std::make_shared<opt::SigmoidMulFusion>());
fusion_pm->AddPass(std::make_shared<opt::ConvActivationFusion>());
fusion_pm->AddPass(std::make_shared<opt::ConvTupleGetItemFusion>());
fusion_pm->AddPass(std::make_shared<opt::ConvTupleActivationFusion>());
fusion_pm->AddPass(std::make_shared<opt::TfliteLstmCellFusion>());
fusion_pm->AddPass(std::make_shared<opt::TfLstmCellFusion>());
fusion_pm->AddPass(std::make_shared<opt::TfBidirectionGruFusion>());
}
if (config->fmk == lite::converter::FmkType_MS) {
auto remove_unused_cast_pass = std::make_shared<opt::RemoveUnusedCastOpPass>();
if (remove_unused_cast_pass == nullptr) {
MS_LOG(ERROR) << "RemoveUnusedCastOpPass should be specified";
return RET_ERROR;
}
remove_unused_cast_pass->SetFmkType(config->fmk);
fusion_pm->AddPass(remove_unused_cast_pass);
}
if (config->fmk == lite::converter::FmkType_ONNX) {
auto remove_unused_transpose_pass = std::make_shared<opt::RemoveUnusedTransposeOpPass>();
if (remove_unused_transpose_pass == nullptr) {
MS_LOG(ERROR) << "RemoveUnusedTransposeOpPass should be specified";
return RET_ERROR;
}
remove_unused_transpose_pass->SetFmkType(config->fmk);
fusion_pm->AddPass(remove_unused_transpose_pass);
}
fusion_pm->AddPass(std::make_shared<opt::ConvConvFusion>());
optimizer->AddPassManager(fusion_pm);
return RET_OK;
}
int AnfTransform::AddGraphPass(const std::shared_ptr<opt::GraphOptimizer> &optimizer, const converter::Flags *config) {
auto graph_pm = std::make_shared<opt::PassManager>("anf graph pass manager", true);
if (config->fmk == lite::converter::FmkType_TFLITE || config->fmk == lite::converter::FmkType_TF ||
config->fmk == lite::converter::FmkType_ONNX) {
graph_pm->AddPass(std::make_shared<opt::WhilePass>());
graph_pm->AddPass(std::make_shared<opt::IfPass>());
}
auto weight_format_hardcode_pass = std::make_shared<opt::WeightFormatHardCodePass>();
weight_format_hardcode_pass->SetFmkType(config->fmk);
weight_format_hardcode_pass->SetQuantType(config->quantType);
graph_pm->AddPass(weight_format_hardcode_pass);
auto weight_format_transform_pass = std::make_shared<opt::WeightFormatTransformPass>();
weight_format_transform_pass->SetFmkType(config->fmk);
weight_format_transform_pass->SetQuantType(config->quantType);
graph_pm->AddPass(weight_format_transform_pass);
auto slice_prepose_pass = std::make_shared<opt::SlicePreposePass>();
slice_prepose_pass->SetFmkType(config->fmk);
graph_pm->AddPass(slice_prepose_pass);
optimizer->AddPassManager(graph_pm);
return RET_OK;
}
int AnfTransform::AddConvertPass(const std::shared_ptr<opt::GraphOptimizer> &optimizer,
const converter::Flags *config) {
auto convert_pm = std::make_shared<opt::PassManager>("anf graph convert pass manager", true);
convert_pm->AddPass(std::make_shared<opt::ClipConvertActivationPass>());
if (config->fmk == lite::converter::FmkType_TFLITE) {
convert_pm->AddPass(std::make_shared<opt::GroupDepthwiseOpConvertPass>());
convert_pm->AddPass(std::make_shared<opt::TfliteInputsAdjustPass>());
}
optimizer->AddPassManager(convert_pm);
return RET_OK;
}
int AnfTransform::AddConstFoldPass(const std::shared_ptr<opt::GraphOptimizer> &optimizer,
const converter::Flags *config) {
auto const_fold_pm = std::make_shared<opt::PassManager>("const fold fusion pass manager", false);
const_fold_pm->AddPass(std::make_shared<opt::RemoveRedundantOpPass>());
if (!config->trainModel) {
auto inne_context_ptr = std::make_shared<lite::InnerContext>();
inne_context_ptr->Init();
const_fold_pm->AddPass(std::make_shared<opt::ConstFoldPass>(inne_context_ptr));
}
auto update_conv2d_param_pass = std::make_shared<opt::UpdateConv2DParamPass>();
update_conv2d_param_pass->SetFmkType(config->fmk);
const_fold_pm->AddPass(update_conv2d_param_pass);
auto weight_format_hardcode_pass = std::make_shared<opt::WeightFormatHardCodePass>();
weight_format_hardcode_pass->SetFmkType(config->fmk);
weight_format_hardcode_pass->SetQuantType(config->quantType);
const_fold_pm->AddPass(weight_format_hardcode_pass);
auto infershape_pass = std::make_shared<opt::InferShapePass>();
infershape_pass->SetFmkType(config->fmk);
const_fold_pm->AddPass(infershape_pass);
optimizer->AddPassManager(const_fold_pm);
return RET_OK;
}
int AnfTransform::RunAdjustPass(const FuncGraphPtr &old_graph, const converter::Flags *config) {
if (config->fmk == converter::FmkType_MS) {
if (RunMindirAdjustPass(old_graph, config) != RET_OK) {
return RET_ERROR;
}
}
auto adjust_input = std::make_shared<opt::InputAdjustPass>();
if (!adjust_input->Run(old_graph)) {
MS_LOG(ERROR) << "adjust input failed.";
return RET_ERROR;
}
switch (config->fmk) {
case converter::FmkType_ONNX:
return RunOnnxAdjustPass(old_graph, config);
case converter::FmkType_TF:
return RunTFAdjustPass(old_graph, config);
default:
return RET_OK;
}
}
int AnfTransform::RunMindirAdjustPass(const FuncGraphPtr &old_graph, const converter::Flags *config) {
auto primitive_adjust_pass = std::make_shared<opt::PrimitiveAdjustPass>();
primitive_adjust_pass->SetFmkType(config->fmk);
if (!primitive_adjust_pass->Run(old_graph)) {
MS_LOG(ERROR) << "primitive adjust failed.";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_ERROR);
return RET_ERROR;
}
auto mindir_adjust_pass = std::make_shared<opt::MindirAdjustPass>();
mindir_adjust_pass->SetFmkType(config->fmk);
mindir_adjust_pass->SetQuantType(config->quantType);
mindir_adjust_pass->SetTrainFlag(config->trainModel);
if (!mindir_adjust_pass->Run(old_graph)) {
MS_LOG(ERROR) << "mindir adjust failed.";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_ERROR);
return RET_ERROR;
}
return RET_OK;
}
int AnfTransform::RunOnnxAdjustPass(const FuncGraphPtr &old_graph, const converter::Flags *config) {
// onnx pre adjustment
auto onnx_adjust_pass = std::make_shared<opt::OnnxInputAdjustOpPass>();
if (!onnx_adjust_pass->Run(old_graph)) {
MS_LOG(ERROR) << "onnx adjust failed.";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_ERROR);
return RET_ERROR;
}
return RET_OK;
}
int AnfTransform::RunTFAdjustPass(const FuncGraphPtr &old_graph, const converter::Flags *config) {
auto functionalize_control_op_pass = std::make_shared<opt::FunctionalizeControlOpPass>();
if (!functionalize_control_op_pass->Run(old_graph)) {
MS_LOG(ERROR) << "functionalize control op pass failed.";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_ERROR);
return RET_ERROR;
}
return RET_OK;
}
int AnfTransform::RunPrecedingPass(const FuncGraphPtr &old_graph, const converter::Flags &config) {
MS_ASSERT(old_graph != nullptr);
auto asylic_optimizer = std::make_shared<opt::GraphOptimizer>();
auto asylic_pm = std::make_shared<opt::PassManager>("asylic pass manager", false);
// fuse tf1.x bidirection_gru into GRU, must be placed here because graph is cyclic
asylic_pm->AddPass(std::make_shared<opt::TfBidirectionGruCfFusion>());
// remove remaining cyclic nodes
asylic_pm->AddPass(std::make_shared<opt::UnusedNodeRemovePass>());
asylic_optimizer->AddPassManager(asylic_pm);
if (!asylic_optimizer->Optimize(old_graph)) {
MS_LOG(ERROR) << "gru cf fusion pass failed.";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_ERROR);
return RET_ERROR;
}
return RET_OK;
}
int AnfTransform::DoQuantize(const FuncGraphPtr &old_graph, const converter::Flags *config,
const FuncGraphPtr &new_graph) {
// quant
if (config->quantType == schema::QuantType_PostTraining) {
this->m_quantizer_ = std::make_unique<quant::PostTrainingQuantizer>(new_graph, config->configFile, config->bitNum);
if (m_quantizer_ == nullptr) {
MS_LOG(ERROR) << "New PostTrainingQuantizer failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_MEMORY_FAILED);
return RET_ERROR;
}
} else if (config->quantType == schema::QuantType_WeightQuant) {
this->m_quantizer_ = std::make_unique<quant::WeightQuantizer>(new_graph, *config);
if (m_quantizer_ == nullptr) {
MS_LOG(ERROR) << "New WeightQuantizer failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_MEMORY_FAILED);
return RET_ERROR;
}
}
if (m_quantizer_ != nullptr) {
m_quantizer_->flags = *config;
auto status = m_quantizer_->DoQuantize(new_graph);
if (status != RET_OK) {
MS_LOG(ERROR) << "Quant failed " << status;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return RET_ERROR;
}
}
return RET_OK;
}
FuncGraphPtr AnfTransform::TransformSingleFuncGraph(const FuncGraphPtr &old_graph, const converter::Flags *config) {
MS_ASSERT(nullptr != old_graph);
if (config == nullptr) {
MS_LOG(ERROR) << "config should be specified";
return nullptr;
}
if (old_graph->has_flag("HasTransformed")) {
old_graph->set_flag("HasTransformed", false);
return old_graph;
}
auto status = RunPrecedingPass(old_graph, *config);
if (status != RET_OK) {
MS_LOG(ERROR) << "Run Preceding pass failed.";
return nullptr;
}
status = RunAdjustPass(old_graph, config);
if (status != RET_OK) {
MS_LOG(ERROR) << "Run Adjust pass failed.";
return nullptr;
}
auto optimizer = std::make_shared<opt::GraphOptimizer>();
status = AddConstFoldPass(optimizer, config);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add const fold pass failed.";
return nullptr;
}
status = AddConvertPass(optimizer, config);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add convert pass failed.";
return nullptr;
}
status = AddFusionPass(optimizer, config);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add fusion pass failed.";
return nullptr;
}
status = AddGraphPass(optimizer, config);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add graph pass failed.";
return nullptr;
}
auto new_graph = optimizer->Optimize(old_graph);
if (new_graph == nullptr) {
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_NULL_PTR);
return nullptr;
}
status = DoQuantize(old_graph, config, new_graph);
if (status != RET_OK) {
MS_LOG(ERROR) << "Do Quantize failed.";
return nullptr;
}
return new_graph;
}
STATUS AnfTransform::GetAllFuncGraph(const FuncGraphPtr &main_graph, FuncGraphVector *subgraphs,
std::vector<ValueNodePtr> *vnodes) {
auto nodes = TopoSort(main_graph->get_return());
for (auto &node : nodes) {
auto fg = GetValueNode<FuncGraphPtr>(node);
if (fg) {
vnodes->push_back(utils::cast<ValueNodePtr>(node));
subgraphs->push_back(fg);
}
}
return RET_OK;
}
FuncGraphPtr AnfTransform::Transform(const FuncGraphPtr &main_graph, const converter::Flags *config) {
// transform main_graph
auto new_main_graph = TransformSingleFuncGraph(main_graph, config);
if (new_main_graph == nullptr) {
MS_LOG(ERROR) << "TransformSingleFuncGraph failed.";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_ERROR);
return nullptr;
}
// transform sub_graph
FuncGraphVector subgraphs{};
std::vector<ValueNodePtr> vnodes{};
int ret = GetAllFuncGraph(main_graph, &subgraphs, &vnodes);
if (ret != RET_OK) {
MS_LOG(ERROR) << "GetAllFuncGraph failed " << ret;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(ret);
return nullptr;
}
for (size_t i = 0; i < subgraphs.size(); i++) {
auto new_graph = Transform(subgraphs.at(i), config);
new_graph->set_flag("HasTransformed", true);
vnodes.at(i)->set_value(new_graph);
}
return new_main_graph;
}
} // namespace mindspore::lite