You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/cpu/test_reduce_scatter.py

77 lines
2.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.ops import operations as P
import mindspore._ms_mpi as mpi
# run comand:
# mpirun -output-filename log -merge-stderr-to-stdout -np 3 python test_reduce_scatter.py
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
context.set_mpi_config(enable_mpi=True)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.op = "sum"
self.reducescatter = P.HostReduceScatter(op=self.op, group=[0,1,2])
def construct(self, x):
return self.reducescatter(x)
class AllGatherNet(nn.Cell):
def __init__(self):
super(AllGatherNet, self).__init__()
self.hostallgather = P.HostAllGather(group=(0, 1, 2))
def construct(self, x):
return self.hostallgather(x)
def test_net_reduce_scatter():
x = np.arange(12).astype(np.float32) * 0.1
reducescatter = Net()
rankid = mpi.get_rank_id()
print("self rankid:", rankid)
output = reducescatter(Tensor(x, mstype.float32))
print("output:\n", output)
if rankid == 0:
expect_result = np.arange(4).astype(np.float32) * 0.3
if rankid == 1:
expect_result = np.arange(4, 8).astype(np.float32) * 0.3
if rankid == 2:
expect_result = np.arange(8, 12).astype(np.float32) * 0.3
diff = abs(output.asnumpy() - expect_result)
error = np.ones(shape=expect_result.shape) * 1.0e-6
assert np.all(diff < error)
allgather = AllGatherNet()
allgather_output = allgather(output)
print("allgather result:\n", allgather_output)
expect_allgather_result = np.arange(12).astype(np.float32) * 0.3
diff = abs(allgather_output.asnumpy() - expect_allgather_result)
error = np.ones(shape=expect_allgather_result.shape) * 1.0e-6
assert np.all(diff < error)
if __name__ == '__main__':
test_net_reduce_scatter()