You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/research/nlp/ternarybert/train.py

166 lines
9.2 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""task distill script"""
import os
import argparse
from mindspore import context
from mindspore.train.model import Model
from mindspore.nn.optim import AdamWeightDecay
from mindspore import set_seed
from src.dataset import create_dataset
from src.utils import StepCallBack, ModelSaveCkpt, EvalCallBack, BertLearningRate
from src.config import train_cfg, eval_cfg, teacher_net_cfg, student_net_cfg, task_cfg
from src.cell_wrapper import BertNetworkWithLoss, BertTrainCell
WEIGHTS_NAME = 'eval_model.ckpt'
EVAL_DATA_NAME = 'eval.tf_record'
TRAIN_DATA_NAME = 'train.tf_record'
def parse_args():
"""
parse args
"""
parser = argparse.ArgumentParser(description='ternarybert task distill')
parser.add_argument('--device_target', type=str, default='GPU', choices=['Ascend', 'GPU'],
help='Device where the code will be implemented. (Default: GPU)')
parser.add_argument('--do_eval', type=str, default='true', choices=['true', 'false'],
help='Do eval task during training or not. (Default: true)')
parser.add_argument('--epoch_size', type=int, default=3, help='Epoch size for train phase. (Default: 3)')
parser.add_argument('--device_id', type=int, default=0, help='Device id. (Default: 0)')
parser.add_argument('--do_shuffle', type=str, default='true', choices=['true', 'false'],
help='Enable shuffle for train dataset. (Default: true)')
parser.add_argument('--enable_data_sink', type=str, default='true', choices=['true', 'false'],
help='Enable data sink. (Default: true)')
parser.add_argument('--save_ckpt_step', type=int, default=50,
help='If do_eval is false, the checkpoint will be saved every save_ckpt_step. (Default: 50)')
parser.add_argument('--eval_ckpt_step', type=int, default=50,
help='If do_eval is true, the evaluation will be ran every eval_ckpt_step. (Default: 50)')
parser.add_argument('--max_ckpt_num', type=int, default=10,
help='The number of checkpoints will not be larger than max_ckpt_num. (Default: 10)')
parser.add_argument('--data_sink_steps', type=int, default=1, help='Sink steps for each epoch. (Default: 1)')
parser.add_argument('--teacher_model_dir', type=str, default='', help='The checkpoint directory of teacher model.')
parser.add_argument('--student_model_dir', type=str, default='', help='The checkpoint directory of student model.')
parser.add_argument('--data_dir', type=str, default='', help='Data directory.')
parser.add_argument('--output_dir', type=str, default='./', help='The output checkpoint directory.')
parser.add_argument('--task_name', type=str, default='sts-b', choices=['sts-b', 'qnli', 'mnli'],
help='The name of the task to train. (Default: sts-b)')
parser.add_argument('--dataset_type', type=str, default='tfrecord', choices=['tfrecord', 'mindrecord'],
help='The name of the task to train. (Default: tfrecord)')
parser.add_argument('--seed', type=int, default=1, help='The random seed')
parser.add_argument('--train_batch_size', type=int, default=16, help='Batch size for training')
parser.add_argument('--eval_batch_size', type=int, default=32, help='Eval Batch size in callback')
return parser.parse_args()
def run_task_distill(args_opt):
"""
run task distill
"""
task = task_cfg[args_opt.task_name]
teacher_net_cfg.seq_length = task.seq_length
student_net_cfg.seq_length = task.seq_length
train_cfg.batch_size = args_opt.train_batch_size
eval_cfg.batch_size = args_opt.eval_batch_size
teacher_ckpt = os.path.join(args_opt.teacher_model_dir, args_opt.task_name, WEIGHTS_NAME)
student_ckpt = os.path.join(args_opt.student_model_dir, args_opt.task_name, WEIGHTS_NAME)
train_data_dir = os.path.join(args_opt.data_dir, args_opt.task_name, TRAIN_DATA_NAME)
eval_data_dir = os.path.join(args_opt.data_dir, args_opt.task_name, EVAL_DATA_NAME)
save_ckpt_dir = os.path.join(args_opt.output_dir, args_opt.task_name)
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args.device_id)
rank = 0
device_num = 1
train_dataset = create_dataset(batch_size=train_cfg.batch_size,
device_num=device_num,
rank=rank,
do_shuffle=args_opt.do_shuffle,
data_dir=train_data_dir,
data_type=args_opt.dataset_type,
seq_length=task.seq_length,
task_type=task.task_type,
drop_remainder=True)
dataset_size = train_dataset.get_dataset_size()
print('train dataset size:', dataset_size)
eval_dataset = create_dataset(batch_size=eval_cfg.batch_size,
device_num=device_num,
rank=rank,
do_shuffle=args_opt.do_shuffle,
data_dir=eval_data_dir,
data_type=args_opt.dataset_type,
seq_length=task.seq_length,
task_type=task.task_type,
drop_remainder=False)
print('eval dataset size:', eval_dataset.get_dataset_size())
if args_opt.enable_data_sink == 'true':
repeat_count = args_opt.epoch_size * dataset_size // args_opt.data_sink_steps
else:
repeat_count = args_opt.epoch_size
netwithloss = BertNetworkWithLoss(teacher_config=teacher_net_cfg, teacher_ckpt=teacher_ckpt,
student_config=student_net_cfg, student_ckpt=student_ckpt,
is_training=True, task_type=task.task_type, num_labels=task.num_labels)
params = netwithloss.trainable_params()
optimizer_cfg = train_cfg.optimizer_cfg
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
warmup_steps=int(dataset_size * args_opt.epoch_size *
optimizer_cfg.AdamWeightDecay.warmup_ratio),
decay_steps=int(dataset_size * args_opt.epoch_size),
power=optimizer_cfg.AdamWeightDecay.power)
decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
other_params = list(filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params))
group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
{'params': other_params, 'weight_decay': 0.0},
{'order_params': params}]
optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
netwithgrads = BertTrainCell(netwithloss, optimizer=optimizer)
if args_opt.do_eval == 'true':
eval_dataset = list(eval_dataset.create_dict_iterator())
callback = [EvalCallBack(network=netwithloss.bert,
dataset=eval_dataset,
eval_ckpt_step=args_opt.eval_ckpt_step,
save_ckpt_dir=save_ckpt_dir,
embedding_bits=student_net_cfg.embedding_bits,
weight_bits=student_net_cfg.weight_bits,
clip_value=student_net_cfg.weight_clip_value,
metrics=task.metrics)]
else:
callback = [StepCallBack(),
ModelSaveCkpt(network=netwithloss.bert,
save_ckpt_step=args_opt.save_ckpt_step,
max_ckpt_num=args_opt.max_ckpt_num,
output_dir=save_ckpt_dir,
embedding_bits=student_net_cfg.embedding_bits,
weight_bits=student_net_cfg.weight_bits,
clip_value=student_net_cfg.weight_clip_value)]
model = Model(netwithgrads)
model.train(repeat_count, train_dataset, callbacks=callback,
dataset_sink_mode=(args_opt.enable_data_sink == 'true'),
sink_size=args_opt.data_sink_steps)
if __name__ == '__main__':
args = parse_args()
set_seed(args.seed)
run_task_distill(args)