You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
7.0 KiB
170 lines
7.0 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""train squeezenet."""
|
|
import os
|
|
import argparse
|
|
from mindspore import context
|
|
from mindspore import Tensor
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
from mindspore.train.model import Model
|
|
from mindspore.context import ParallelMode
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from mindspore.communication.management import init, get_rank, get_group_size
|
|
from mindspore.common import set_seed
|
|
from src.lr_generator import get_lr
|
|
from src.CrossEntropySmooth import CrossEntropySmooth
|
|
|
|
parser = argparse.ArgumentParser(description='Image classification')
|
|
parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'],
|
|
help='Model.')
|
|
parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.')
|
|
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
|
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
|
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
|
|
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
|
|
args_opt = parser.parse_args()
|
|
|
|
set_seed(1)
|
|
|
|
if args_opt.net == "squeezenet":
|
|
from src.squeezenet import SqueezeNet as squeezenet
|
|
if args_opt.dataset == "cifar10":
|
|
from src.config import config1 as config
|
|
from src.dataset import create_dataset_cifar as create_dataset
|
|
else:
|
|
from src.config import config2 as config
|
|
from src.dataset import create_dataset_imagenet as create_dataset
|
|
else:
|
|
from src.squeezenet import SqueezeNet_Residual as squeezenet
|
|
if args_opt.dataset == "cifar10":
|
|
from src.config import config3 as config
|
|
from src.dataset import create_dataset_cifar as create_dataset
|
|
else:
|
|
from src.config import config4 as config
|
|
from src.dataset import create_dataset_imagenet as create_dataset
|
|
|
|
if __name__ == '__main__':
|
|
target = args_opt.device_target
|
|
ckpt_save_dir = config.save_checkpoint_path
|
|
|
|
# init context
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
device_target=target)
|
|
if args_opt.run_distribute:
|
|
if target == "Ascend":
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
context.set_context(device_id=device_id,
|
|
enable_auto_mixed_precision=True)
|
|
context.set_auto_parallel_context(
|
|
device_num=args_opt.device_num,
|
|
parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
gradients_mean=True)
|
|
init()
|
|
# GPU target
|
|
else:
|
|
init()
|
|
context.set_auto_parallel_context(
|
|
device_num=get_group_size(),
|
|
parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
gradients_mean=True)
|
|
ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(
|
|
get_rank()) + "/"
|
|
|
|
# create dataset
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
|
do_train=True,
|
|
repeat_num=1,
|
|
batch_size=config.batch_size,
|
|
target=target)
|
|
step_size = dataset.get_dataset_size()
|
|
|
|
# define net
|
|
net = squeezenet(num_classes=config.class_num)
|
|
|
|
# load checkpoint
|
|
if args_opt.pre_trained:
|
|
param_dict = load_checkpoint(args_opt.pre_trained)
|
|
load_param_into_net(net, param_dict)
|
|
|
|
# init lr
|
|
lr = get_lr(lr_init=config.lr_init,
|
|
lr_end=config.lr_end,
|
|
lr_max=config.lr_max,
|
|
total_epochs=config.epoch_size,
|
|
warmup_epochs=config.warmup_epochs,
|
|
pretrain_epochs=config.pretrain_epoch_size,
|
|
steps_per_epoch=step_size,
|
|
lr_decay_mode=config.lr_decay_mode)
|
|
lr = Tensor(lr)
|
|
|
|
# define loss
|
|
if args_opt.dataset == "imagenet":
|
|
if not config.use_label_smooth:
|
|
config.label_smooth_factor = 0.0
|
|
loss = CrossEntropySmooth(sparse=True,
|
|
reduction='mean',
|
|
smooth_factor=config.label_smooth_factor,
|
|
num_classes=config.class_num)
|
|
else:
|
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
|
|
# define opt, model
|
|
if target == "Ascend":
|
|
loss_scale = FixedLossScaleManager(config.loss_scale,
|
|
drop_overflow_update=False)
|
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
|
lr,
|
|
config.momentum,
|
|
config.weight_decay,
|
|
config.loss_scale,
|
|
use_nesterov=True)
|
|
model = Model(net,
|
|
loss_fn=loss,
|
|
optimizer=opt,
|
|
loss_scale_manager=loss_scale,
|
|
metrics={'acc'},
|
|
amp_level="O2",
|
|
keep_batchnorm_fp32=False)
|
|
else:
|
|
# GPU target
|
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
|
lr,
|
|
config.momentum,
|
|
config.weight_decay,
|
|
use_nesterov=True)
|
|
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
|
|
|
|
# define callbacks
|
|
time_cb = TimeMonitor(data_size=step_size)
|
|
loss_cb = LossMonitor()
|
|
cb = [time_cb, loss_cb]
|
|
if config.save_checkpoint:
|
|
config_ck = CheckpointConfig(
|
|
save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
|
ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset,
|
|
directory=ckpt_save_dir,
|
|
config=config_ck)
|
|
cb += [ckpt_cb]
|
|
|
|
# train model
|
|
model.train(config.epoch_size - config.pretrain_epoch_size,
|
|
dataset,
|
|
callbacks=cb)
|