You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/optimizer/test_python_pass.py

65 lines
2.3 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore
import mindspore.nn as nn
from mindspore import context
from mindspore.common.tensor import Tensor
from mindspore.ops import operations as P
from mindspore.common.python_pass_register import registe_pass, PyPassManager
from mindspore.common.api import _generate_pip_args
from mindspore._c_expression import generate_key, Executor_
context.set_context(mode=context.GRAPH_MODE)
def get_func_graph(obj, *args, phase="predict"):
args_names, args_list = _generate_pip_args(obj, *args)
dic = dict(zip(args_names, args_list))
key = generate_key(phase, dic)
phase_prefix = str(key[1])
if phase == 'export':
phase = phase + '.' + phase_prefix + '.' + str(obj.create_time)
else:
phase = phase_prefix + phase + '.' + str(obj.create_time)
_executor = Executor_.get_instance()
_executor.compile(obj, args_list, phase, False)
return _executor.get_func_graph(phase)
def test_softmax_relu():
"""
Use python pass to transform from Softmax to ReLU.
"""
inputs = Tensor(np.ones([42]), mindspore.float16)
softmax_model = nn.Softmax()
@registe_pass(run_only_once=True)
def softmax_relu_pass():
softmax = P.Softmax()
relu = P.ReLU()
def pattern(x):
x = softmax(x)
return x
def target(x):
x = relu(x)
return x
return pattern, target
transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2)
ppm = PyPassManager()
ppm.unregiste(softmax_relu_pass)
assert "ReLU" in transformed_repr
assert "Softmax" not in transformed_repr