You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
61 lines
2.4 KiB
61 lines
2.4 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
class NetBoundingBoxDecode(nn.Cell):
|
|
def __init__(self, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)):
|
|
super(NetBoundingBoxDecode, self).__init__()
|
|
self.decode = P.BoundingBoxDecode(max_shape=(768, 1280), means=means, stds=stds,
|
|
wh_ratio_clip=0.016)
|
|
|
|
def construct(self, anchor, groundtruth):
|
|
return self.decode(anchor, groundtruth)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_boundingbox_decode():
|
|
anchor = np.array([[4, 1, 2, 1], [2, 2, 2, 3]], np.float32)
|
|
deltas = np.array([[3, 1, 2, 2], [1, 2, 1, 4]], np.float32)
|
|
means = (0.1, 0.1, 0.2, 0.2)
|
|
stds = (2.0, 2.0, 3.0, 3.0)
|
|
anchor_box = Tensor(anchor, mindspore.float32)
|
|
deltas_box = Tensor(deltas, mindspore.float32)
|
|
expect_deltas = np.array([[28.6500, 0.0000, 0.0000, 33.8500],
|
|
[0.0000, 0.0000, 15.8663, 72.7000]], np.float32)
|
|
|
|
error = np.ones(shape=[2, 4]) * 1.0e-4
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
|
boundingbox_decode = NetBoundingBoxDecode(means, stds)
|
|
output = boundingbox_decode(anchor_box, deltas_box)
|
|
diff = output.asnumpy() - expect_deltas
|
|
assert np.all(abs(diff) < error)
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
|
boundingbox_decode = NetBoundingBoxDecode(means, stds)
|
|
output = boundingbox_decode(anchor_box, deltas_box)
|
|
diff = output.asnumpy() - expect_deltas
|
|
assert np.all(abs(diff) < error)
|