You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
5.1 KiB
125 lines
5.1 KiB
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""post process for 310 inference"""
|
|
import os
|
|
import argparse
|
|
import numpy as np
|
|
import cv2
|
|
|
|
from eval import cal_hist, pre_process
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="deeplabv3 accuracy calculation")
|
|
parser.add_argument('--data_root', type=str, default='', help='root path of val data')
|
|
parser.add_argument('--data_lst', type=str, default='', help='list of val data')
|
|
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
|
|
parser.add_argument('--crop_size', type=int, default=513, help='crop size')
|
|
parser.add_argument('--scales', type=float, action='append', help='scales of evaluation')
|
|
parser.add_argument('--flip', action='store_true', help='perform left-right flip')
|
|
parser.add_argument('--ignore_label', type=int, default=255, help='ignore label')
|
|
parser.add_argument('--num_classes', type=int, default=21, help='number of classes')
|
|
parser.add_argument('--result_path', type=str, default='./result_Files', help='result Files path')
|
|
args, _ = parser.parse_known_args()
|
|
return args
|
|
|
|
def eval_batch(args, result_file, img_lst, crop_size=513, flip=True):
|
|
result_lst = []
|
|
batch_size = len(img_lst)
|
|
batch_img = np.zeros((args.batch_size, 3, crop_size, crop_size), dtype=np.float32)
|
|
resize_hw = []
|
|
for l in range(batch_size):
|
|
img_ = img_lst[l]
|
|
img_, resize_h, resize_w = pre_process(args, img_, crop_size)
|
|
batch_img[l] = img_
|
|
resize_hw.append([resize_h, resize_w])
|
|
|
|
batch_img = np.ascontiguousarray(batch_img)
|
|
net_out = np.fromfile(result_file, np.float32).reshape(args.batch_size, args.num_classes, crop_size, crop_size)
|
|
|
|
for bs in range(batch_size):
|
|
probs_ = net_out[bs][:, :resize_hw[bs][0], :resize_hw[bs][1]].transpose((1, 2, 0))
|
|
ori_h, ori_w = img_lst[bs].shape[0], img_lst[bs].shape[1]
|
|
probs_ = cv2.resize(probs_, (ori_w, ori_h))
|
|
result_lst.append(probs_)
|
|
|
|
return result_lst
|
|
|
|
|
|
def eval_batch_scales(args, eval_net, img_lst, scales,
|
|
base_crop_size=513, flip=True):
|
|
sizes_ = [int((base_crop_size - 1) * sc) + 1 for sc in scales]
|
|
probs_lst = eval_batch(args, eval_net, img_lst, crop_size=sizes_[0], flip=flip)
|
|
print(sizes_)
|
|
for crop_size_ in sizes_[1:]:
|
|
probs_lst_tmp = eval_batch(args, eval_net, img_lst, crop_size=crop_size_, flip=flip)
|
|
for pl, _ in enumerate(probs_lst):
|
|
probs_lst[pl] += probs_lst_tmp[pl]
|
|
|
|
result_msk = []
|
|
for i in probs_lst:
|
|
result_msk.append(i.argmax(axis=2))
|
|
return result_msk
|
|
|
|
|
|
def acc_cal():
|
|
args = parse_args()
|
|
args.image_mean = [103.53, 116.28, 123.675]
|
|
args.image_std = [57.375, 57.120, 58.395]
|
|
# data list
|
|
with open(args.data_lst) as f:
|
|
img_lst = f.readlines()
|
|
# evaluate
|
|
hist = np.zeros((args.num_classes, args.num_classes))
|
|
batch_img_lst = []
|
|
batch_msk_lst = []
|
|
bi = 0
|
|
image_num = 0
|
|
for i, line in enumerate(img_lst):
|
|
img_path, msk_path = line.strip().split(' ')
|
|
result_file = os.path.join(args.result_path, os.path.basename(img_path).split('.jpg')[0] + '_0.bin')
|
|
img_path = os.path.join(args.data_root, img_path)
|
|
msk_path = os.path.join(args.data_root, msk_path)
|
|
img_ = cv2.imread(img_path)
|
|
msk_ = cv2.imread(msk_path, cv2.IMREAD_GRAYSCALE)
|
|
batch_img_lst.append(img_)
|
|
batch_msk_lst.append(msk_)
|
|
bi += 1
|
|
if bi == args.batch_size:
|
|
batch_res = eval_batch_scales(args, result_file, batch_img_lst, scales=args.scales,
|
|
base_crop_size=args.crop_size, flip=args.flip)
|
|
for mi in range(args.batch_size):
|
|
hist += cal_hist(batch_msk_lst[mi].flatten(), batch_res[mi].flatten(), args.num_classes)
|
|
|
|
bi = 0
|
|
batch_img_lst = []
|
|
batch_msk_lst = []
|
|
print('processed {} images'.format(i+1))
|
|
image_num = i
|
|
|
|
if bi > 0:
|
|
batch_res = eval_batch_scales(args, result_file, batch_img_lst, scales=args.scales,
|
|
base_crop_size=args.crop_size, flip=args.flip)
|
|
for mi in range(bi):
|
|
hist += cal_hist(batch_msk_lst[mi].flatten(), batch_res[mi].flatten(), args.num_classes)
|
|
print('processed {} images'.format(image_num + 1))
|
|
|
|
print(hist)
|
|
iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
|
|
print('per-class IoU', iu)
|
|
print('mean IoU', np.nanmean(iu))
|
|
|
|
if __name__ == '__main__':
|
|
acc_cal()
|