You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/faster_rcnn/export.py

53 lines
2.3 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export checkpoint file into air, onnx, mindir models"""
import argparse
import numpy as np
import mindspore as ms
from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context
from src.FasterRcnn.faster_rcnn_r50 import FasterRcnn_Infer
from src.config import config
parser = argparse.ArgumentParser(description='fasterrcnn_export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--file_name", type=str, default="faster_rcnn", help="output file name.")
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
help="device target")
parser.add_argument('--ckpt_file', type=str, default='', help='fasterrcnn ckpt file.')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
if args.device_target == "Ascend":
context.set_context(device_id=args.device_id)
if __name__ == '__main__':
net = FasterRcnn_Infer(config=config)
param_dict = load_checkpoint(args.ckpt_file)
param_dict_new = {}
for key, value in param_dict.items():
param_dict_new["network." + key] = value
load_param_into_net(net, param_dict_new)
img = Tensor(np.zeros([config.test_batch_size, 3, config.img_height, config.img_width]), ms.float32)
img_metas = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, 4]), ms.float32)
export(net, img, img_metas, file_name=args.file_name, file_format=args.file_format)