You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
49 lines
2.2 KiB
49 lines
2.2 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" export checkpoint file into models"""
|
|
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor, context
|
|
from mindspore.train.serialization import load_param_into_net, export
|
|
|
|
from src.transformer_model import TransformerModel
|
|
from src.eval_config import cfg, transformer_net_cfg
|
|
from eval import load_weights
|
|
|
|
parser = argparse.ArgumentParser(description='transformer export')
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
|
parser.add_argument("--file_name", type=str, default="transformer", help="output file name.")
|
|
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
|
|
parser.add_argument("--device_target", type=str, default="Ascend",
|
|
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
|
|
args = parser.parse_args()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
|
if args.device_target == "Ascend":
|
|
context.set_context(device_id=args.device_id)
|
|
|
|
if __name__ == '__main__':
|
|
tfm_model = TransformerModel(config=transformer_net_cfg, is_training=False, use_one_hot_embeddings=False)
|
|
|
|
parameter_dict = load_weights(cfg.model_file)
|
|
load_param_into_net(tfm_model, parameter_dict)
|
|
|
|
source_ids = Tensor(np.ones((transformer_net_cfg.batch_size, transformer_net_cfg.seq_length)).astype(np.int32))
|
|
source_mask = Tensor(np.ones((transformer_net_cfg.batch_size, transformer_net_cfg.seq_length)).astype(np.int32))
|
|
|
|
export(tfm_model, source_ids, source_mask, file_name=args.file_name, file_format=args.file_format)
|