You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
54 lines
2.4 KiB
54 lines
2.4 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""export ckpt to model"""
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from mindspore import context, Tensor
|
|
from mindspore.train.serialization import export, load_checkpoint
|
|
|
|
from src.deepfm import ModelBuilder
|
|
from src.config import DataConfig, ModelConfig, TrainConfig
|
|
|
|
parser = argparse.ArgumentParser(description="deepfm export")
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
|
parser.add_argument("--batch_size", type=int, default=16000, help="batch size")
|
|
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
|
|
parser.add_argument("--file_name", type=str, default="deepfm", help="output file name.")
|
|
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
|
|
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
|
|
help="device target")
|
|
args = parser.parse_args()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
|
if args.device_target == "Ascend":
|
|
context.set_context(device_id=args.device_id)
|
|
|
|
if __name__ == "__main__":
|
|
data_config = DataConfig()
|
|
|
|
model_builder = ModelBuilder(ModelConfig, TrainConfig)
|
|
_, network = model_builder.get_train_eval_net()
|
|
network.set_train(False)
|
|
|
|
load_checkpoint(args.ckpt_file, net=network)
|
|
|
|
batch_ids = Tensor(np.zeros([data_config.batch_size, data_config.data_field_size]).astype(np.int32))
|
|
batch_wts = Tensor(np.zeros([data_config.batch_size, data_config.data_field_size]).astype(np.float32))
|
|
labels = Tensor(np.zeros([data_config.batch_size, 1]).astype(np.float32))
|
|
|
|
input_data = [batch_ids, batch_wts, labels]
|
|
export(network, *input_data, file_name=args.file_name, file_format=args.file_format)
|