You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/cpp/dataset/test_de.cc

193 lines
7.6 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <vector>
#include "common/common_test.h"
#include "include/api/types.h"
#include "minddata/dataset/include/execute.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/vision.h"
#ifdef ENABLE_ACL
#include "minddata/dataset/include/vision_ascend.h"
#endif
#include "minddata/dataset/kernels/tensor_op.h"
#include "include/api/model.h"
#include "include/api/serialization.h"
#include "include/api/context.h"
using namespace mindspore;
using namespace mindspore::dataset;
using namespace mindspore::dataset::vision;
class TestDE : public ST::Common {
public:
TestDE() {}
};
TEST_F(TestDE, TestResNetPreprocess) {
// Read images
std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
// Define transform operations
std::shared_ptr<TensorTransform> decode(new vision::Decode());
std::shared_ptr<TensorTransform> resize(new vision::Resize({224, 224}));
std::shared_ptr<TensorTransform> normalize(
new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
std::shared_ptr<TensorTransform> hwc2chw(new vision::HWC2CHW());
mindspore::dataset::Execute Transform({decode, resize, normalize, hwc2chw});
// Apply transform on images
Status rc = Transform(image, &image);
// Check image info
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(image.Shape().size(), 3);
ASSERT_EQ(image.Shape()[0], 3);
ASSERT_EQ(image.Shape()[1], 224);
ASSERT_EQ(image.Shape()[2], 224);
}
TEST_F(TestDE, TestDvpp) {
#ifdef ENABLE_ACL
// Read images from target directory
std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
auto image = MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
// Define dvpp transform
std::vector<uint32_t> crop_paras = {224, 224};
std::vector<uint32_t> resize_paras = {256, 256};
std::shared_ptr<TensorTransform> decode_resize_crop(new vision::DvppDecodeResizeCropJpeg(crop_paras, resize_paras));
mindspore::dataset::Execute Transform(decode_resize_crop, MapTargetDevice::kAscend310);
// Apply transform on images
Status rc = Transform(image, &image);
// Check image info
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(image.Shape().size(), 3);
int32_t real_h = 0;
int32_t real_w = 0;
int32_t remainder = crop_paras[crop_paras.size() - 1] % 16;
if (crop_paras.size() == 1) {
real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
real_w = (remainder == 0) ? crop_paras[0] : crop_paras[0] + 16 - remainder;
} else {
real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
real_w = (remainder == 0) ? crop_paras[1] : crop_paras[1] + 16 - remainder;
}
/* TODO Use in the future after compute college finish their job
ASSERT_EQ(image.Shape()[0], real_h); // For image in YUV format, each pixel takes 1.5 byte
ASSERT_EQ(image.Shape()[1], real_w);
ASSERT_EQ(image.DataSize(), real_h * real_w * 1.5);
*/
ASSERT_EQ(image.Shape()[0], 1.5 * real_h * real_w); // For image in YUV format, each pixel takes 1.5 byte
ASSERT_EQ(image.Shape()[1], 1);
ASSERT_EQ(image.Shape()[2], 1);
ASSERT_EQ(image.DataSize(), real_h * real_w * 1.5);
#endif
}
TEST_F(TestDE, TestDvppSinkMode) {
#ifdef ENABLE_ACL
// Read images from target directory
std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
auto image = MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
// Define dvpp transform
std::vector<int32_t> crop_paras = {224, 224};
std::vector<int32_t> resize_paras = {256};
std::shared_ptr<TensorTransform> decode(new vision::Decode());
std::shared_ptr<TensorTransform> resize(new vision::Resize(resize_paras));
std::shared_ptr<TensorTransform> centercrop(new vision::CenterCrop(crop_paras));
std::vector<std::shared_ptr<TensorTransform>> trans_list = {decode, resize, centercrop};
mindspore::dataset::Execute Transform(trans_list, MapTargetDevice::kAscend310);
// Apply transform on images
Status rc = Transform(image, &image);
// Check image info
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(image.Shape().size(), 3);
int32_t real_h = 0;
int32_t real_w = 0;
int32_t remainder = crop_paras[crop_paras.size() - 1] % 16;
if (crop_paras.size() == 1) {
real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
real_w = (remainder == 0) ? crop_paras[0] : crop_paras[0] + 16 - remainder;
} else {
real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
real_w = (remainder == 0) ? crop_paras[1] : crop_paras[1] + 16 - remainder;
}
ASSERT_EQ(image.Shape()[0], 1.5 * real_h * real_w); // For image in YUV format, each pixel takes 1.5 byte
ASSERT_EQ(image.Shape()[1], 1);
ASSERT_EQ(image.Shape()[2], 1);
ASSERT_EQ(image.DataSize(), real_h * real_w * 1.5);
Transform.DeviceMemoryRelease();
#endif
}
TEST_F(TestDE, TestDvppDecodeResizeCropNormalize) {
#ifdef ENABLE_ACL
std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
auto image = MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
// Define dvpp transform
std::vector<int32_t> crop_paras = {416};
std::vector<int32_t> resize_paras = {512};
std::vector<float> mean = {0.485 * 255, 0.456 * 255, 0.406 * 255};
std::vector<float> std = {0.229 * 255, 0.224 * 255, 0.225 * 255};
std::shared_ptr<TensorTransform> decode(new vision::Decode());
std::shared_ptr<TensorTransform> resize(new vision::Resize(resize_paras));
std::shared_ptr<TensorTransform> centercrop(new vision::CenterCrop(crop_paras));
std::shared_ptr<TensorTransform> normalize(new vision::Normalize(mean, std));
std::vector<std::shared_ptr<TensorTransform>> trans_list = {decode, resize, centercrop, normalize};
mindspore::dataset::Execute Transform(trans_list, MapTargetDevice::kAscend310);
std::string aipp_cfg = Transform.AippCfgGenerator();
ASSERT_EQ(aipp_cfg, "./aipp.cfg");
// Apply transform on images
Status rc = Transform(image, &image);
// Check image info
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(image.Shape().size(), 3);
int32_t real_h = 0;
int32_t real_w = 0;
int32_t remainder = crop_paras[crop_paras.size() - 1] % 16;
if (crop_paras.size() == 1) {
real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
real_w = (remainder == 0) ? crop_paras[0] : crop_paras[0] + 16 - remainder;
} else {
real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
real_w = (remainder == 0) ? crop_paras[1] : crop_paras[1] + 16 - remainder;
}
ASSERT_EQ(image.Shape()[0], 1.5 * real_h * real_w); // For image in YUV format, each pixel takes 1.5 byte
ASSERT_EQ(image.Shape()[1], 1);
ASSERT_EQ(image.Shape()[2], 1);
ASSERT_EQ(image.DataSize(), real_h * real_w * 1.5);
Transform.DeviceMemoryRelease();
#endif
}