You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/train/summary/test_image_summary.py

187 lines
5.3 KiB

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test_image_summary"""
import logging
import os
import numpy as np
import mindspore.nn as nn
from mindspore import Model, context
from mindspore import Tensor
from mindspore.nn.optim import Momentum
from mindspore.train.summary.summary_record import SummaryRecord, _cache_summary_tensor_data
from mindspore.train.callback import Callback
from .....dataset_mock import MindData
CUR_DIR = os.getcwd()
SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/"
log = logging.getLogger("test")
log.setLevel(level=logging.ERROR)
def make_image_tensor(shape, dtype=float):
""" make_image_tensor """
# pylint: disable=unused-argument
numel = np.prod(shape)
x = (np.arange(numel, dtype=float)).reshape(shape)
return x
def get_test_data(step):
""" get_test_data """
test_data_list = []
tag1 = "x1[:Image]"
tag2 = "x2[:Image]"
np1 = make_image_tensor([2, 3, 8, 8])
np2 = make_image_tensor([step, 3, 8, 8])
dict1 = {}
dict1["name"] = tag1
dict1["data"] = Tensor(np1)
dict2 = {}
dict2["name"] = tag2
dict2["data"] = Tensor(np2)
test_data_list.append(dict1)
test_data_list.append(dict2)
return test_data_list
# Test: call method on parse graph code
def test_image_summary_sample():
""" test_image_summary_sample """
with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_IMAGE") as test_writer:
for i in range(1, 5):
test_data = get_test_data(i)
_cache_summary_tensor_data(test_data)
test_writer.record(i)
test_writer.flush()
class Net(nn.Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal',
pad_mode='valid')
self.bn = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.flatten = nn.Flatten()
self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0
def construct(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.flatten(x)
out = self.fc(x)
return out
class LossNet(nn.Cell):
""" LossNet definition """
def __init__(self):
super(LossNet, self).__init__()
self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal',
pad_mode='valid')
self.bn = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.flatten = nn.Flatten()
self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0
self.loss = nn.SoftmaxCrossEntropyWithLogits()
def construct(self, x, y):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.flatten(x)
x = self.fc(x)
out = self.loss(x, y)
return out
def get_model():
""" get_model """
net = Net()
loss = nn.SoftmaxCrossEntropyWithLogits()
optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
context.set_context(mode=context.GRAPH_MODE)
model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
return model
def get_dataset():
""" get_dataset """
dataset_types = (np.float32, np.float32)
dataset_shapes = ((2, 3, 224, 224), (2, 3))
dataset = MindData(size=2, batch_size=2,
np_types=dataset_types,
output_shapes=dataset_shapes,
input_indexs=(0, 1))
return dataset
class ImageSummaryCallback(Callback):
"""Image summary callback."""
def __init__(self, summary_record):
self._summary_record = summary_record
def __enter__(self):
return self
def __exit__(self, *err):
self._summary_record.close()
def record(self, step, train_network=None):
"""record data."""
self._summary_record.record(step, train_network)
self._summary_record.flush()
def test_image_summary_train():
""" test_image_summary_train """
dataset = get_dataset()
with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_IMAGE") as test_writer:
model = get_model()
callback = ImageSummaryCallback(test_writer)
model.train(2, dataset, callbacks=[callback])
def test_image_summary_data():
""" test_image_summary_data """
dataset = get_dataset()
test_data_list = []
i = 1
for next_element in dataset:
tag = "image_" + str(i) + "[:Image]"
dct = {}
dct["name"] = tag
dct["data"] = Tensor(next_element[0])
test_data_list.append(dct)
i += 1
with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_IMAGE") as test_writer:
_cache_summary_tensor_data(test_data_list)
test_writer.record(1)