You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
126 lines
5.8 KiB
126 lines
5.8 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
######################## train and test lenet example ########################
|
|
1. train lenet and get network model files(.ckpt) :
|
|
python main.py --data_path /home/workspace/mindspore_dataset/Tutorial_Network/Lenet/MNIST_Data
|
|
|
|
2. test lenet according to model file:
|
|
python main.py --data_path /home/workspace/mindspore_dataset/Tutorial_Network/Lenet/MNIST_Data
|
|
--mode test --ckpt_path checkpoint_lenet_1-1_1875.ckpt
|
|
"""
|
|
import os
|
|
import argparse
|
|
from config import mnist_cfg as cfg
|
|
|
|
import mindspore.dataengine as de
|
|
import mindspore.nn as nn
|
|
from mindspore.model_zoo.lenet import LeNet5
|
|
from mindspore import context, Tensor
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
|
|
from mindspore.train import Model
|
|
import mindspore.ops.operations as P
|
|
import mindspore.transforms.c_transforms as C
|
|
from mindspore.transforms import Inter
|
|
from mindspore.nn.metrics import Accuracy
|
|
from mindspore.ops import functional as F
|
|
from mindspore.common import dtype as mstype
|
|
|
|
|
|
class CrossEntropyLoss(nn.Cell):
|
|
"""
|
|
Define loss for network
|
|
"""
|
|
def __init__(self):
|
|
super(CrossEntropyLoss, self).__init__()
|
|
self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
|
|
self.mean = P.ReduceMean()
|
|
self.one_hot = P.OneHot()
|
|
self.on_value = Tensor(1.0, mstype.float32)
|
|
self.off_value = Tensor(0.0, mstype.float32)
|
|
|
|
def construct(self, logits, label):
|
|
label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value)
|
|
loss = self.cross_entropy(logits, label)[0]
|
|
loss = self.mean(loss, (-1,))
|
|
return loss
|
|
|
|
def create_dataset(data_path, batch_size=32, repeat_size=1,
|
|
num_parallel_workers=1):
|
|
"""
|
|
create dataset for train or test
|
|
"""
|
|
# define dataset
|
|
ds1 = de.MnistDataset(data_path)
|
|
|
|
# apply map operations on images
|
|
ds1 = ds1.map(input_columns="label", operations=C.TypeCast(mstype.int32))
|
|
ds1 = ds1.map(input_columns="image", operations=C.Resize((cfg.image_height, cfg.image_width),
|
|
interpolation=Inter.LINEAR),
|
|
num_parallel_workers=num_parallel_workers)
|
|
ds1 = ds1.map(input_columns="image", operations=C.Rescale(1 / 0.3081, -1 * 0.1307 / 0.3081),
|
|
num_parallel_workers=num_parallel_workers)
|
|
ds1 = ds1.map(input_columns="image", operations=C.Rescale(1.0 / 255.0, 0.0),
|
|
num_parallel_workers=num_parallel_workers)
|
|
ds1 = ds1.map(input_columns="image", operations=C.HWC2CHW(), num_parallel_workers=num_parallel_workers)
|
|
|
|
# apply DatasetOps
|
|
ds1 = ds1.shuffle(buffer_size=cfg.buffer_size) # 10000 as in LeNet train script
|
|
ds1 = ds1.batch(batch_size, drop_remainder=True)
|
|
ds1 = ds1.repeat(repeat_size)
|
|
|
|
return ds1
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
|
|
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
|
|
help='device where the code will be implemented (default: Ascend)')
|
|
parser.add_argument('--mode', type=str, default="train", choices=['train', 'test'],
|
|
help='implement phase, set to train or test')
|
|
parser.add_argument('--data_path', type=str, default="./MNIST_Data",
|
|
help='path where the dataset is saved')
|
|
parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide\
|
|
path where the trained ckpt file')
|
|
|
|
args = parser.parse_args()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
|
|
|
network = LeNet5(cfg.num_classes)
|
|
network.set_train()
|
|
# net_loss = nn.SoftmaxCrossEntropyWithLogits() # support this loss soon
|
|
net_loss = CrossEntropyLoss()
|
|
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
|
|
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
|
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
|
|
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
|
|
|
if args.mode == 'train': # train
|
|
ds = create_dataset(os.path.join(args.data_path, args.mode), batch_size=cfg.batch_size,
|
|
repeat_size=cfg.epoch_size)
|
|
print("============== Starting Training ==============")
|
|
model.train(cfg['epoch_size'], ds, callbacks=[ckpoint_cb, LossMonitor()], dataset_sink_mode=False)
|
|
elif args.mode == 'test': # test
|
|
print("============== Starting Testing ==============")
|
|
param_dict = load_checkpoint(args.ckpt_path)
|
|
load_param_into_net(network, param_dict)
|
|
ds_eval = create_dataset(os.path.join(args.data_path, "test"), 32, 1)
|
|
acc = model.eval(ds_eval, dataset_sink_mode=False)
|
|
print("============== Accuracy:{} ==============".format(acc))
|
|
else:
|
|
raise RuntimeError('mode should be train or test, rather than {}'.format(args.mode))
|