You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/example/yolov3_coco2017/dataset.py

390 lines
15 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""YOLOv3 dataset"""
from __future__ import division
import abc
import io
import os
import math
import json
import numpy as np
from PIL import Image
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
import mindspore.dataset as de
import mindspore.dataset.transforms.vision.py_transforms as P
from config import ConfigYOLOV3ResNet18
iter_cnt = 0
_NUM_BOXES = 50
def preprocess_fn(image, box, is_training):
"""Preprocess function for dataset."""
config_anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 163, 326]
anchors = np.array([float(x) for x in config_anchors]).reshape(-1, 2)
do_hsv = False
max_boxes = 20
num_classes = ConfigYOLOV3ResNet18.num_classes
def _rand(a=0., b=1.):
return np.random.rand() * (b - a) + a
def _preprocess_true_boxes(true_boxes, anchors, in_shape=None):
"""Get true boxes."""
num_layers = anchors.shape[0] // 3
anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
true_boxes = np.array(true_boxes, dtype='float32')
# input_shape = np.array([in_shape, in_shape], dtype='int32')
input_shape = np.array(in_shape, dtype='int32')
boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2.
boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
true_boxes[..., 0:2] = boxes_xy / input_shape[::-1]
true_boxes[..., 2:4] = boxes_wh / input_shape[::-1]
grid_shapes = [input_shape // 32, input_shape // 16, input_shape // 8]
y_true = [np.zeros((grid_shapes[l][0], grid_shapes[l][1], len(anchor_mask[l]),
5 + num_classes), dtype='float32') for l in range(num_layers)]
anchors = np.expand_dims(anchors, 0)
anchors_max = anchors / 2.
anchors_min = -anchors_max
valid_mask = boxes_wh[..., 0] >= 1
wh = boxes_wh[valid_mask]
if len(wh) >= 1:
wh = np.expand_dims(wh, -2)
boxes_max = wh / 2.
boxes_min = -boxes_max
intersect_min = np.maximum(boxes_min, anchors_min)
intersect_max = np.minimum(boxes_max, anchors_max)
intersect_wh = np.maximum(intersect_max - intersect_min, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
box_area = wh[..., 0] * wh[..., 1]
anchor_area = anchors[..., 0] * anchors[..., 1]
iou = intersect_area / (box_area + anchor_area - intersect_area)
best_anchor = np.argmax(iou, axis=-1)
for t, n in enumerate(best_anchor):
for l in range(num_layers):
if n in anchor_mask[l]:
i = np.floor(true_boxes[t, 0] * grid_shapes[l][1]).astype('int32')
j = np.floor(true_boxes[t, 1] * grid_shapes[l][0]).astype('int32')
k = anchor_mask[l].index(n)
c = true_boxes[t, 4].astype('int32')
y_true[l][j, i, k, 0:4] = true_boxes[t, 0:4]
y_true[l][j, i, k, 4] = 1.
y_true[l][j, i, k, 5 + c] = 1.
pad_gt_box0 = np.zeros(shape=[50, 4], dtype=np.float32)
pad_gt_box1 = np.zeros(shape=[50, 4], dtype=np.float32)
pad_gt_box2 = np.zeros(shape=[50, 4], dtype=np.float32)
mask0 = np.reshape(y_true[0][..., 4:5], [-1])
gt_box0 = np.reshape(y_true[0][..., 0:4], [-1, 4])
gt_box0 = gt_box0[mask0 == 1]
pad_gt_box0[:gt_box0.shape[0]] = gt_box0
mask1 = np.reshape(y_true[1][..., 4:5], [-1])
gt_box1 = np.reshape(y_true[1][..., 0:4], [-1, 4])
gt_box1 = gt_box1[mask1 == 1]
pad_gt_box1[:gt_box1.shape[0]] = gt_box1
mask2 = np.reshape(y_true[2][..., 4:5], [-1])
gt_box2 = np.reshape(y_true[2][..., 0:4], [-1, 4])
gt_box2 = gt_box2[mask2 == 1]
pad_gt_box2[:gt_box2.shape[0]] = gt_box2
return y_true[0], y_true[1], y_true[2], pad_gt_box0, pad_gt_box1, pad_gt_box2
def _data_aug(image, box, is_training, jitter=0.3, hue=0.1, sat=1.5, val=1.5, image_size=(352, 640)):
"""Data augmentation function."""
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
iw, ih = image.size
ori_image_shape = np.array([ih, iw], np.int32)
h, w = image_size
if not is_training:
image = image.resize((w, h), Image.BICUBIC)
image_data = np.array(image) / 255.
if len(image_data.shape) == 2:
image_data = np.expand_dims(image_data, axis=-1)
image_data = np.concatenate([image_data, image_data, image_data], axis=-1)
image_data = image_data.astype(np.float32)
# correct boxes
box_data = np.zeros((max_boxes, 5))
if len(box) >= 1:
np.random.shuffle(box)
if len(box) > max_boxes:
box = box[:max_boxes]
# xmin ymin xmax ymax
box[:, [0, 2]] = box[:, [0, 2]] * float(w) / float(iw)
box[:, [1, 3]] = box[:, [1, 3]] * float(h) / float(ih)
box_data[:len(box)] = box
else:
image_data, box_data = None, None
# preprocess bounding boxes
bbox_true_1, bbox_true_2, bbox_true_3, gt_box1, gt_box2, gt_box3 = \
_preprocess_true_boxes(box_data, anchors, image_size)
return image_data, bbox_true_1, bbox_true_2, bbox_true_3, \
ori_image_shape, gt_box1, gt_box2, gt_box3
flip = _rand() < .5
# correct boxes
box_data = np.zeros((max_boxes, 5))
while True:
# Prevent the situation that all boxes are eliminated
new_ar = float(w) / float(h) * _rand(1 - jitter, 1 + jitter) / \
_rand(1 - jitter, 1 + jitter)
scale = _rand(0.25, 2)
if new_ar < 1:
nh = int(scale * h)
nw = int(nh * new_ar)
else:
nw = int(scale * w)
nh = int(nw / new_ar)
dx = int(_rand(0, w - nw))
dy = int(_rand(0, h - nh))
if len(box) >= 1:
t_box = box.copy()
np.random.shuffle(t_box)
t_box[:, [0, 2]] = t_box[:, [0, 2]] * float(nw) / float(iw) + dx
t_box[:, [1, 3]] = t_box[:, [1, 3]] * float(nh) / float(ih) + dy
if flip:
t_box[:, [0, 2]] = w - t_box[:, [2, 0]]
t_box[:, 0:2][t_box[:, 0:2] < 0] = 0
t_box[:, 2][t_box[:, 2] > w] = w
t_box[:, 3][t_box[:, 3] > h] = h
box_w = t_box[:, 2] - t_box[:, 0]
box_h = t_box[:, 3] - t_box[:, 1]
t_box = t_box[np.logical_and(box_w > 1, box_h > 1)] # discard invalid box
if len(t_box) >= 1:
box = t_box
break
box_data[:len(box)] = box
# resize image
image = image.resize((nw, nh), Image.BICUBIC)
# place image
new_image = Image.new('RGB', (w, h), (128, 128, 128))
new_image.paste(image, (dx, dy))
image = new_image
# flip image or not
if flip:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
# convert image to gray or not
gray = _rand() < .25
if gray:
image = image.convert('L').convert('RGB')
# when the channels of image is 1
image = np.array(image)
if len(image.shape) == 2:
image = np.expand_dims(image, axis=-1)
image = np.concatenate([image, image, image], axis=-1)
# distort image
hue = _rand(-hue, hue)
sat = _rand(1, sat) if _rand() < .5 else 1 / _rand(1, sat)
val = _rand(1, val) if _rand() < .5 else 1 / _rand(1, val)
image_data = image / 255.
if do_hsv:
x = rgb_to_hsv(image_data)
x[..., 0] += hue
x[..., 0][x[..., 0] > 1] -= 1
x[..., 0][x[..., 0] < 0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x > 1] = 1
x[x < 0] = 0
image_data = hsv_to_rgb(x) # numpy array, 0 to 1
image_data = image_data.astype(np.float32)
# preprocess bounding boxes
bbox_true_1, bbox_true_2, bbox_true_3, gt_box1, gt_box2, gt_box3 = \
_preprocess_true_boxes(box_data, anchors, image_size)
return image_data, bbox_true_1, bbox_true_2, bbox_true_3, \
ori_image_shape, gt_box1, gt_box2, gt_box3
images, bbox_1, bbox_2, bbox_3, _, gt_box1, gt_box2, gt_box3 = _data_aug(image, box, is_training)
return images, bbox_1, bbox_2, bbox_3, gt_box1, gt_box2, gt_box3
def anno_parser(annos_str):
"""Annotation parser."""
annos = []
for anno_str in annos_str:
anno = list(map(int, anno_str.strip().split(',')))
annos.append(anno)
return annos
def expand_path(path):
"""Get file list from path."""
files = []
if os.path.isdir(path):
for file in os.listdir(path):
if os.path.isfile(os.path.join(path, file)):
files.append(file)
else:
raise RuntimeError("Path given is not valid.")
return files
def read_image(img_path):
"""Read image with PIL."""
with open(img_path, "rb") as f:
img = f.read()
data = io.BytesIO(img)
img = Image.open(data)
return np.array(img)
class BaseDataset():
"""BaseDataset for GeneratorDataset iterator."""
def __init__(self, image_dir, anno_path):
self.image_dir = image_dir
self.anno_path = anno_path
self.cur_index = 0
self.samples = []
self.image_anno_dict = {}
self._load_samples()
def __getitem__(self, item):
sample = self.samples[item]
return self._next_data(sample, self.image_dir, self.image_anno_dict)
def __len__(self):
return len(self.samples)
@staticmethod
def _next_data(sample, image_dir, image_anno_dict):
"""Get next data."""
image = read_image(os.path.join(image_dir, sample))
annos = image_anno_dict[sample]
return [np.array(image), np.array(annos)]
@abc.abstractmethod
def _load_samples(self):
"""Base load samples."""
class YoloDataset(BaseDataset):
"""YoloDataset for GeneratorDataset iterator."""
def _load_samples(self):
"""Load samples."""
image_files_raw = expand_path(self.image_dir)
self.samples = self._filter_valid_data(self.anno_path, image_files_raw)
self.dataset_size = len(self.samples)
if self.dataset_size == 0:
raise RuntimeError("Valid dataset is none!")
def _filter_valid_data(self, anno_path, image_files_raw):
"""Filter valid data."""
image_files = []
anno_dict = {}
print("Start filter valid data.")
with open(anno_path, "rb") as f:
lines = f.readlines()
for line in lines:
line_str = line.decode("utf-8")
line_split = str(line_str).split(' ')
anno_dict[line_split[0].split("/")[-1]] = line_split[1:]
anno_set = set(anno_dict.keys())
image_set = set(image_files_raw)
for image_file in (anno_set & image_set):
image_files.append(image_file)
self.image_anno_dict[image_file] = anno_parser(anno_dict[image_file])
image_files.sort()
print("Filter valid data done!")
return image_files
class DistributedSampler():
"""DistributedSampler for YOLOv3"""
def __init__(self, dataset_size, batch_size, num_replicas=None, rank=None, shuffle=True):
if num_replicas is None:
num_replicas = 1
if rank is None:
rank = 0
self.dataset_size = dataset_size
self.num_replicas = num_replicas
self.rank = rank % num_replicas
self.epoch = 0
self.num_samples = max(batch_size, int(math.ceil(dataset_size * 1.0 / self.num_replicas)))
self.total_size = self.num_samples * self.num_replicas
self.shuffle = shuffle
def __iter__(self):
# deterministically shuffle based on epoch
if self.shuffle:
indices = np.random.RandomState(seed=self.epoch).permutation(self.dataset_size)
indices = indices.tolist()
else:
indices = list(range(self.dataset_size))
# add extra samples to make it evenly divisible
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch
def create_yolo_dataset(image_dir, anno_path, batch_size=32, repeat_num=10, device_num=1, rank=0,
is_training=True, num_parallel_workers=8):
"""Creatr YOLOv3 dataset with GeneratorDataset."""
yolo_dataset = YoloDataset(image_dir=image_dir, anno_path=anno_path)
distributed_sampler = DistributedSampler(yolo_dataset.dataset_size, batch_size, device_num, rank)
ds = de.GeneratorDataset(yolo_dataset, column_names=["image", "annotation"], sampler=distributed_sampler)
ds.set_dataset_size(len(distributed_sampler))
compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training))
hwc_to_chw = P.HWC2CHW()
ds = ds.map(input_columns=["image", "annotation"],
output_columns=["image", "bbox_1", "bbox_2", "bbox_3", "gt_box1", "gt_box2", "gt_box3"],
columns_order=["image", "bbox_1", "bbox_2", "bbox_3", "gt_box1", "gt_box2", "gt_box3"],
operations=compose_map_func, num_parallel_workers=num_parallel_workers)
ds = ds.map(input_columns=["image"], operations=hwc_to_chw, num_parallel_workers=num_parallel_workers)
ds = ds.shuffle(buffer_size=256)
ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(repeat_num)
return ds