You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/nn/distribution/test_geometric.py

211 lines
6.3 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.Geometric.
"""
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_arguments():
"""
Args passing during initialization.
"""
g = msd.Geometric()
assert isinstance(g, msd.Distribution)
g = msd.Geometric([0.1, 0.3, 0.5, 0.9], dtype=dtype.int32)
assert isinstance(g, msd.Distribution)
def test_type():
with pytest.raises(TypeError):
msd.Geometric([0.1], dtype=dtype.float32)
def test_name():
with pytest.raises(TypeError):
msd.Geometric([0.1], name=1.0)
def test_seed():
with pytest.raises(TypeError):
msd.Geometric([0.1], seed='seed')
def test_prob():
"""
Invalid probability.
"""
with pytest.raises(ValueError):
msd.Geometric([-0.1], dtype=dtype.int32)
with pytest.raises(ValueError):
msd.Geometric([1.1], dtype=dtype.int32)
with pytest.raises(ValueError):
msd.Geometric([0.0], dtype=dtype.int32)
with pytest.raises(ValueError):
msd.Geometric([1.0], dtype=dtype.int32)
class GeometricProb(nn.Cell):
"""
Geometric distribution: initialize with probs.
"""
def __init__(self):
super(GeometricProb, self).__init__()
self.g = msd.Geometric(0.5, dtype=dtype.int32)
def construct(self, value):
prob = self.g.prob(value)
log_prob = self.g.log_prob(value)
cdf = self.g.cdf(value)
log_cdf = self.g.log_cdf(value)
sf = self.g.survival_function(value)
log_sf = self.g.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_geometric_prob():
"""
Test probability functions: passing value through construct.
"""
net = GeometricProb()
value = Tensor([3, 4, 5, 6, 7], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class GeometricProb1(nn.Cell):
"""
Geometric distribution: initialize without probs.
"""
def __init__(self):
super(GeometricProb1, self).__init__()
self.g = msd.Geometric(dtype=dtype.int32)
def construct(self, value, probs):
prob = self.g.prob(value, probs)
log_prob = self.g.log_prob(value, probs)
cdf = self.g.cdf(value, probs)
log_cdf = self.g.log_cdf(value, probs)
sf = self.g.survival_function(value, probs)
log_sf = self.g.log_survival(value, probs)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_geometric_prob1():
"""
Test probability functions: passing value/probs through construct.
"""
net = GeometricProb1()
value = Tensor([3, 4, 5, 6, 7], dtype=dtype.float32)
probs = Tensor([0.5], dtype=dtype.float32)
ans = net(value, probs)
assert isinstance(ans, Tensor)
class GeometricKl(nn.Cell):
"""
Test class: kl_loss between Geometric distributions.
"""
def __init__(self):
super(GeometricKl, self).__init__()
self.g1 = msd.Geometric(0.7, dtype=dtype.int32)
self.g2 = msd.Geometric(dtype=dtype.int32)
def construct(self, probs_b, probs_a):
kl1 = self.g1.kl_loss('Geometric', probs_b)
kl2 = self.g2.kl_loss('Geometric', probs_b, probs_a)
return kl1 + kl2
def test_kl():
"""
Test kl_loss function.
"""
ber_net = GeometricKl()
probs_b = Tensor([0.3], dtype=dtype.float32)
probs_a = Tensor([0.7], dtype=dtype.float32)
ans = ber_net(probs_b, probs_a)
assert isinstance(ans, Tensor)
class GeometricCrossEntropy(nn.Cell):
"""
Test class: cross_entropy of Geometric distribution.
"""
def __init__(self):
super(GeometricCrossEntropy, self).__init__()
self.g1 = msd.Geometric(0.3, dtype=dtype.int32)
self.g2 = msd.Geometric(dtype=dtype.int32)
def construct(self, probs_b, probs_a):
h1 = self.g1.cross_entropy('Geometric', probs_b)
h2 = self.g2.cross_entropy('Geometric', probs_b, probs_a)
return h1 + h2
def test_cross_entropy():
"""
Test cross_entropy between Geometric distributions.
"""
net = GeometricCrossEntropy()
probs_b = Tensor([0.3], dtype=dtype.float32)
probs_a = Tensor([0.7], dtype=dtype.float32)
ans = net(probs_b, probs_a)
assert isinstance(ans, Tensor)
class GeometricBasics(nn.Cell):
"""
Test class: basic mean/sd/mode/entropy function.
"""
def __init__(self):
super(GeometricBasics, self).__init__()
self.g = msd.Geometric([0.3, 0.5], dtype=dtype.int32)
def construct(self):
mean = self.g.mean()
sd = self.g.sd()
var = self.g.var()
mode = self.g.mode()
entropy = self.g.entropy()
return mean + sd + var + mode + entropy
def test_bascis():
"""
Test mean/sd/mode/entropy functionality of Geometric distribution.
"""
net = GeometricBasics()
ans = net()
assert isinstance(ans, Tensor)
class GeoConstruct(nn.Cell):
"""
Bernoulli distribution: going through construct.
"""
def __init__(self):
super(GeoConstruct, self).__init__()
self.g = msd.Geometric(0.5, dtype=dtype.int32)
self.g1 = msd.Geometric(dtype=dtype.int32)
def construct(self, value, probs):
prob = self.g('prob', value)
prob1 = self.g('prob', value, probs)
prob2 = self.g1('prob', value, probs)
return prob + prob1 + prob2
def test_geo_construct():
"""
Test probability function going through construct.
"""
net = GeoConstruct()
value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
probs = Tensor([0.5], dtype=dtype.float32)
ans = net(value, probs)
assert isinstance(ans, Tensor)