You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/cpu/test_momentum_op.py

73 lines
2.5 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
import mindspore.nn as nn
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn import Dense
from mindspore import Tensor
import mindspore.context as context
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class MomentumNet(nn.Cell):
def __init__(self):
super(MomentumNet, self).__init__()
self.batch_size = 1
self.reshape = P.Reshape()
weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01)
self.fc1 = Dense(16, 10, weight_init=weight)
def construct(self, input_x):
output = self.reshape(input_x, (self.batch_size, -1))
output = self.fc1(output)
return output
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_momentum():
epoch = 13
net = MomentumNet()
learning_rate = 0.1
momentum = 0.9
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
net_with_criterion = WithLossCell(net, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
train_network.set_train()
losses = []
for i in range(epoch):
data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32)*0.01)
label = Tensor(np.array([0]).astype(np.int32))
loss = train_network(data, label)
losses.append(loss)
print("================================")
print(losses)
"""
expect output:
[[0.04132498 0.00874167 0.00874167 0.00874167 0.00874167
0.00874167 0.00874167 0.00874167 0.00874167 0.00874167]]
"""
error = np.ones(shape=[1, 10]) * 1.0e-6
return losses