You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/resnet/gpu_resnet_benchmark.py

291 lines
12 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train resnet."""
import argparse
import ast
import time
import numpy as np
from mindspore import context
from mindspore import Tensor
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.train.callback import Callback, ModelCheckpoint, CheckpointConfig
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
import mindspore.nn as nn
import mindspore.common.initializer as weight_init
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
from src.resnet_gpu_benchmark import resnet50 as resnet
from src.CrossEntropySmooth import CrossEntropySmooth
from src.momentum import Momentum as MomentumWeightDecay
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--batch_size', type=str, default="256", help='Batch_size: default 256.')
parser.add_argument('--epoch_size', type=str, default="2", help='Epoch_size: default 2')
parser.add_argument('--print_per_steps', type=str, default="20", help='Print loss and time per steps: default 20')
parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
parser.add_argument('--save_ckpt', type=ast.literal_eval, default=False, help='Save ckpt or not: default False')
parser.add_argument('--eval', type=ast.literal_eval, default=False, help='Eval ckpt : default False')
parser.add_argument('--dataset_path', type=str, default=None, help='Imagenet dataset path')
parser.add_argument('--ckpt_path', type=str, default="./", help='The path to save ckpt if save_ckpt is True;\
Or the ckpt model file when eval is True')
parser.add_argument('--mode', type=str, default="GRAPH", choices=["GRAPH", "PYNATIVE"], help='Execute mode')
parser.add_argument('--dtype', type=str, choices=["fp32", "fp16", "FP16", "FP32"], default="fp16", \
help='Compute data type fp32 or fp16: default fp16')
args_opt = parser.parse_args()
set_seed(1)
class MyTimeMonitor(Callback):
def __init__(self, batch_size, sink_size, dataset_size, mode):
super(MyTimeMonitor, self).__init__()
self.batch_size = batch_size
self.size = sink_size
self.data_size = dataset_size
self.mode = mode
def step_begin(self, run_context):
self.step_time = time.time()
def step_end(self, run_context):
cb_params = run_context.original_args()
loss = cb_params.net_outputs
if isinstance(loss, (tuple, list)):
if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray):
loss = loss[0]
if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray):
loss = np.mean(loss.asnumpy())
cur_epoch_num = int(cb_params.cur_epoch_num / (self.data_size / self.size) +1)
cur_step_in_epoch = int(self.size * (cb_params.cur_epoch_num % (self.data_size / self.size)))
total_epochs = int((cb_params.epoch_num - 1) / (self.data_size / self.size) + 1)
if self.mode == context.PYNATIVE_MODE:
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
cur_epoch_num = cb_params.cur_epoch_num
total_epochs = cb_params.epoch_num
if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)):
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training.".format(
cur_epoch_num, cur_step_in_epoch))
step_mseconds = (time.time() - self.step_time) * 1000
fps = self.batch_size / step_mseconds * 1000 * self.size
print("epoch: [%s/%s] step: [%s/%s], loss is %s" % (cur_epoch_num, total_epochs,\
cur_step_in_epoch, self.data_size, loss),\
"Epoch time: {:5.3f} ms, fps: {:d} img/sec.".format(step_mseconds, int(fps)), flush=True)
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="GPU", dtype="fp16",
device_num=1):
if args_opt.mode == "GRAPH":
ds_num_parallel_worker = 4
map_num_parallel_worker = 8
batch_num_parallel_worker = None
else:
ds_num_parallel_worker = 2
map_num_parallel_worker = 3
batch_num_parallel_worker = 2
ds.config.set_numa_enable(True)
if device_num == 1:
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=ds_num_parallel_worker, shuffle=True)
else:
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=ds_num_parallel_worker, shuffle=True,
num_shards=device_num, shard_id=get_rank())
image_size = 224
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
# define map operations
normalize_op = C.Normalize(mean=mean, std=std)
if dtype == "fp16":
if args_opt.eval:
x_dtype = "float32"
else:
x_dtype = "float16"
normalize_op = C.NormalizePad(mean=mean, std=std, dtype=x_dtype)
if do_train:
trans = [
C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
C.RandomHorizontalFlip(prob=0.5),
normalize_op,
]
else:
trans = [
C.Decode(),
C.Resize(256),
C.CenterCrop(image_size),
normalize_op,
]
if dtype == "fp32":
trans.append(C.HWC2CHW())
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=map_num_parallel_worker)
# apply batch operations
data_set = data_set.batch(batch_size, drop_remainder=True, num_parallel_workers=batch_num_parallel_worker)
# apply dataset repeat operation
if repeat_num > 1:
data_set = data_set.repeat(repeat_num)
return data_set
def get_liner_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch):
lr_each_step = []
total_steps = steps_per_epoch * total_epochs
warmup_steps = steps_per_epoch * warmup_epochs
for i in range(total_steps):
if i < warmup_steps:
lr_ = lr_init + (lr_max - lr_init) * i / warmup_steps
else:
lr_ = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
lr_each_step.append(lr_)
lr_each_step = np.array(lr_each_step).astype(np.float32)
return lr_each_step
def train():
# set args
dev = "GPU"
epoch_size = int(args_opt.epoch_size)
total_batch = int(args_opt.batch_size)
print_per_steps = int(args_opt.print_per_steps)
compute_type = str(args_opt.dtype).lower()
ckpt_save_dir = str(args_opt.ckpt_path)
save_ckpt = bool(args_opt.save_ckpt)
device_num = 1
# init context
if args_opt.mode == "GRAPH":
mode = context.GRAPH_MODE
all_reduce_fusion_config = [85, 160]
else:
mode = context.PYNATIVE_MODE
all_reduce_fusion_config = [30, 90, 160]
context.set_context(mode=mode, device_target=dev, save_graphs=False)
if args_opt.run_distribute:
init()
device_num = get_group_size()
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True, all_reduce_fusion_config=all_reduce_fusion_config)
ckpt_save_dir = ckpt_save_dir + "ckpt_" + str(get_rank()) + "/"
# create dataset
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
batch_size=total_batch, target=dev, dtype=compute_type, device_num=device_num)
step_size = dataset.get_dataset_size()
if (print_per_steps > step_size or print_per_steps < 1):
print("Arg: print_per_steps should lessequal to dataset_size ", step_size)
print("Change to default: 20")
print_per_steps = 20
# define net
net = resnet(class_num=1001, dtype=compute_type)
# init weight
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Conv2d):
cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(),
cell.weight.shape,
cell.weight.dtype))
if isinstance(cell, nn.Dense):
cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(),
cell.weight.shape,
cell.weight.dtype))
# init lr
lr = get_liner_lr(lr_init=0, lr_end=0, lr_max=0.8, warmup_epochs=0, total_epochs=epoch_size,
steps_per_epoch=step_size)
lr = Tensor(lr)
# define opt
decayed_params = []
no_decayed_params = []
for param in net.trainable_params():
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
decayed_params.append(param)
else:
no_decayed_params.append(param)
# define loss, model
loss = CrossEntropySmooth(sparse=True, reduction='mean', smooth_factor=0.1, num_classes=1001)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, 0.9, 1e-4)
loss_scale = FixedLossScaleManager(1024, drop_overflow_update=False)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
# Mixed precision
if compute_type == "fp16":
if mode == context.PYNATIVE_MODE:
opt = MomentumWeightDecay(filter(lambda x: x.requires_grad, net.get_parameters()), lr, 0.9, 1e-4, 1024)
else:
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, 0.9, 1e-4, 1024)
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
amp_level="O2", keep_batchnorm_fp32=False)
# define callbacks
if mode == context.PYNATIVE_MODE:
print_per_steps = 1
time_cb = MyTimeMonitor(total_batch, print_per_steps, step_size, mode)
cb = [time_cb]
if save_ckpt:
config_ck = CheckpointConfig(save_checkpoint_steps=5 * step_size, keep_checkpoint_max=5)
ckpt_cb = ModelCheckpoint(prefix="resnet_benchmark", directory=ckpt_save_dir, config=config_ck)
cb += [ckpt_cb]
# train model
print("========START RESNET50 GPU BENCHMARK========")
if mode == context.GRAPH_MODE:
model.train(int(epoch_size * step_size / print_per_steps), dataset, callbacks=cb, sink_size=print_per_steps)
else:
model.train(epoch_size, dataset, callbacks=cb)
def eval_():
# set args
dev = "GPU"
compute_type = str(args_opt.dtype).lower()
ckpt_dir = str(args_opt.ckpt_path)
total_batch = int(args_opt.batch_size)
# init context
if args_opt.mode == "GRAPH":
mode = context.GRAPH_MODE
else:
mode = context.PYNATIVE_MODE
context.set_context(mode=mode, device_target=dev, save_graphs=False)
# create dataset
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, repeat_num=1,
batch_size=total_batch, target=dev, dtype=compute_type)
# define net
net = resnet(class_num=1001, dtype=compute_type)
# load checkpoint
param_dict = load_checkpoint(ckpt_dir)
load_param_into_net(net, param_dict)
net.set_train(False)
# define loss, model
loss = CrossEntropySmooth(sparse=True, reduction='mean', smooth_factor=0.1, num_classes=1001)
# define model
model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})
# eval model
print("========START EVAL RESNET50 ON GPU ========")
res = model.eval(dataset)
print("result:", res, "ckpt=", ckpt_dir)
if __name__ == '__main__':
if not args_opt.eval:
train()
else:
eval_()