You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/dpn/eval.py

92 lines
3.5 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""DPN model eval with MindSpore"""
import os
import argparse
from mindspore import context
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.model import Model
from mindspore.common import set_seed
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.dpn import dpns
from src.config import config
from src.imagenet_dataset import classification_dataset
set_seed(1)
# set context
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend", save_graphs=False, device_id=device_id)
def parse_args():
"""parameters"""
parser = argparse.ArgumentParser('dpn evaluating')
# dataset related
parser.add_argument('--data_dir', type=str, default='', help='eval data dir')
# network related
parser.add_argument('--pretrained', type=str, default='', help='ckpt path to load')
args, _ = parser.parse_known_args()
args.image_size = config.image_size
args.num_classes = config.num_classes
args.batch_size = config.batch_size
args.num_parallel_workers = config.num_parallel_workers
args.backbone = config.backbone
args.loss_scale_num = config.loss_scale_num
args.rank = config.rank
args.group_size = config.group_size
args.dataset = config.dataset
return args
def dpn_evaluate(args):
# create evaluate dataset
eval_path = os.path.join(args.data_dir, 'val')
eval_dataset = classification_dataset(eval_path,
image_size=args.image_size,
num_parallel_workers=args.num_parallel_workers,
per_batch_size=args.batch_size,
max_epoch=1,
rank=args.rank,
shuffle=False,
group_size=args.group_size,
mode='eval')
# create network
net = dpns[args.backbone](num_classes=args.num_classes)
# load checkpoint
load_param_into_net(net, load_checkpoint(args.pretrained))
print("load checkpoint from [{}].".format(args.pretrained))
# loss
if args.dataset == "imagenet-1K":
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
else:
if not args.label_smooth:
args.label_smooth_factor = 0.0
loss = CrossEntropy(smooth_factor=args.label_smooth_factor, num_classes=args.num_classes)
# create model
model = Model(net, amp_level="O2", keep_batchnorm_fp32=False, loss_fn=loss,
metrics={'top_1_accuracy', 'top_5_accuracy'})
# evaluate
output = model.eval(eval_dataset)
print(f'Evaluation result: {output}.')
if __name__ == '__main__':
dpn_evaluate(parse_args())
print('DPN evaluate success!')