You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/shufflenetv2/train.py

123 lines
5.3 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_imagenet."""
import argparse
import ast
import os
import mindspore.nn as nn
from mindspore import context
from mindspore.context import ParallelMode
from mindspore import Tensor
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
from src.shufflenetv2 import ShuffleNetV2
from src.config import config_gpu as cfg
from src.dataset import create_dataset
from src.lr_generator import get_lr_basic
from src.CrossEntropySmooth import CrossEntropySmooth
set_seed(cfg.random_seed)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='image classification training')
parser.add_argument('--dataset_path', type=str, default='', help='Dataset path')
parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
parser.add_argument('--is_distributed', type=ast.literal_eval, default=False, help='distributed training')
parser.add_argument('--platform', type=str, default='GPU', choices=('Ascend', 'GPU'), help='run platform')
parser.add_argument('--model_size', type=str, default='1.0x', help='ShuffleNetV2 model size parameter')
args_opt = parser.parse_args()
if args_opt.platform != "GPU":
raise ValueError("Only supported GPU training.")
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
if os.getenv('DEVICE_ID', "not_set").isdigit():
context.set_context(device_id=int(os.getenv('DEVICE_ID')))
# init distributed
if args_opt.is_distributed:
init("nccl")
cfg.rank = get_rank()
cfg.group_size = get_group_size()
parallel_mode = ParallelMode.DATA_PARALLEL
context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=cfg.group_size,
gradients_mean=True)
else:
cfg.rank = 0
cfg.group_size = 1
# dataloader
dataset = create_dataset(args_opt.dataset_path, True, cfg.rank, cfg.group_size)
batches_per_epoch = dataset.get_dataset_size()
print("Batches Per Epoch: ", batches_per_epoch)
# network
net = ShuffleNetV2(n_class=cfg.num_classes, model_size=args_opt.model_size)
# loss
loss = CrossEntropySmooth(sparse=True, reduction="mean",
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
# learning rate schedule
lr = get_lr_basic(lr_init=cfg.lr_init, total_epochs=cfg.epoch_size,
steps_per_epoch=batches_per_epoch, is_stair=True)
lr = Tensor(lr)
# optimizer
decayed_params = []
no_decayed_params = []
for param in net.trainable_params():
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
decayed_params.append(param)
else:
no_decayed_params.append(param)
group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay},
{'params': no_decayed_params},
{'order_params': net.trainable_params()}]
optimizer = Momentum(params=net.trainable_params(), learning_rate=Tensor(lr), momentum=cfg.momentum,
weight_decay=cfg.weight_decay)
eval_metrics = {'Loss': nn.Loss(),
'Top1-Acc': nn.Top1CategoricalAccuracy(),
'Top5-Acc': nn.Top5CategoricalAccuracy()}
if args_opt.resume:
ckpt = load_checkpoint(args_opt.resume)
load_param_into_net(net, ckpt)
model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={'acc'})
print("============== Starting Training ==============")
loss_cb = LossMonitor(per_print_times=batches_per_epoch)
time_cb = TimeMonitor(data_size=batches_per_epoch)
callbacks = [loss_cb, time_cb]
config_ck = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=cfg.keep_checkpoint_max)
save_ckpt_path = os.path.join(cfg.ckpt_path, 'ckpt_' + str(cfg.rank) + '/')
ckpoint_cb = ModelCheckpoint(prefix=f"shufflenet-rank{cfg.rank}", directory=save_ckpt_path, config=config_ck)
if args_opt.is_distributed & cfg.is_save_on_master:
if cfg.rank == 0:
callbacks.append(ckpoint_cb)
model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True)
else:
callbacks.append(ckpoint_cb)
model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True)
print("train success")