You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
339 lines
13 KiB
339 lines
13 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""YoloV3 eval."""
|
|
import os
|
|
import argparse
|
|
import datetime
|
|
import time
|
|
import sys
|
|
from collections import defaultdict
|
|
|
|
import numpy as np
|
|
from pycocotools.coco import COCO
|
|
from pycocotools.cocoeval import COCOeval
|
|
|
|
from mindspore import Tensor
|
|
from mindspore.context import ParallelMode
|
|
from mindspore import context
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
import mindspore as ms
|
|
from mindspore.compression.quant import QuantizationAwareTraining
|
|
|
|
from src.yolo import YOLOV3DarkNet53
|
|
from src.logger import get_logger
|
|
from src.yolo_dataset import create_yolo_dataset
|
|
from src.config import ConfigYOLOV3DarkNet53
|
|
|
|
devid = int(os.getenv('DEVICE_ID'))
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=devid)
|
|
|
|
|
|
class Redirct:
|
|
def __init__(self):
|
|
self.content = ""
|
|
|
|
def write(self, content):
|
|
self.content += content
|
|
|
|
def flush(self):
|
|
self.content = ""
|
|
|
|
|
|
class DetectionEngine:
|
|
"""Detection engine."""
|
|
def __init__(self, args):
|
|
self.ignore_threshold = args.ignore_threshold
|
|
self.labels = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat',
|
|
'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat',
|
|
'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack',
|
|
'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
|
|
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
|
|
'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
|
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
|
|
'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
|
|
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book',
|
|
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
|
|
self.num_classes = len(self.labels)
|
|
self.results = {}
|
|
self.file_path = ''
|
|
self.save_prefix = args.outputs_dir
|
|
self.annFile = args.annFile
|
|
self._coco = COCO(self.annFile)
|
|
self._img_ids = list(sorted(self._coco.imgs.keys()))
|
|
self.det_boxes = []
|
|
self.nms_thresh = args.nms_thresh
|
|
self.coco_catIds = self._coco.getCatIds()
|
|
|
|
def do_nms_for_results(self):
|
|
"""Get result boxes."""
|
|
for img_id in self.results:
|
|
for clsi in self.results[img_id]:
|
|
dets = self.results[img_id][clsi]
|
|
dets = np.array(dets)
|
|
keep_index = self._nms(dets, self.nms_thresh)
|
|
|
|
keep_box = [{'image_id': int(img_id),
|
|
'category_id': int(clsi),
|
|
'bbox': list(dets[i][:4].astype(float)),
|
|
'score': dets[i][4].astype(float)}
|
|
for i in keep_index]
|
|
self.det_boxes.extend(keep_box)
|
|
|
|
def _nms(self, dets, thresh):
|
|
"""Calculate NMS."""
|
|
# convert xywh -> xmin ymin xmax ymax
|
|
x1 = dets[:, 0]
|
|
y1 = dets[:, 1]
|
|
x2 = x1 + dets[:, 2]
|
|
y2 = y1 + dets[:, 3]
|
|
scores = dets[:, 4]
|
|
|
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
order = scores.argsort()[::-1]
|
|
|
|
keep = []
|
|
while order.size > 0:
|
|
i = order[0]
|
|
keep.append(i)
|
|
xx1 = np.maximum(x1[i], x1[order[1:]])
|
|
yy1 = np.maximum(y1[i], y1[order[1:]])
|
|
xx2 = np.minimum(x2[i], x2[order[1:]])
|
|
yy2 = np.minimum(y2[i], y2[order[1:]])
|
|
|
|
w = np.maximum(0.0, xx2 - xx1 + 1)
|
|
h = np.maximum(0.0, yy2 - yy1 + 1)
|
|
inter = w * h
|
|
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
|
|
|
inds = np.where(ovr <= thresh)[0]
|
|
order = order[inds + 1]
|
|
return keep
|
|
|
|
def write_result(self):
|
|
"""Save result to file."""
|
|
import json
|
|
t = datetime.datetime.now().strftime('_%Y_%m_%d_%H_%M_%S')
|
|
try:
|
|
self.file_path = self.save_prefix + '/predict' + t + '.json'
|
|
f = open(self.file_path, 'w')
|
|
json.dump(self.det_boxes, f)
|
|
except IOError as e:
|
|
raise RuntimeError("Unable to open json file to dump. What(): {}".format(str(e)))
|
|
else:
|
|
f.close()
|
|
return self.file_path
|
|
|
|
def get_eval_result(self):
|
|
"""Get eval result."""
|
|
cocoGt = COCO(self.annFile)
|
|
cocoDt = cocoGt.loadRes(self.file_path)
|
|
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
|
|
cocoEval.evaluate()
|
|
cocoEval.accumulate()
|
|
rdct = Redirct()
|
|
stdout = sys.stdout
|
|
sys.stdout = rdct
|
|
cocoEval.summarize()
|
|
sys.stdout = stdout
|
|
return rdct.content
|
|
|
|
def detect(self, outputs, batch, image_shape, image_id):
|
|
"""Detect boxes."""
|
|
outputs_num = len(outputs)
|
|
# output [|32, 52, 52, 3, 85| ]
|
|
for batch_id in range(batch):
|
|
for out_id in range(outputs_num):
|
|
# 32, 52, 52, 3, 85
|
|
out_item = outputs[out_id]
|
|
# 52, 52, 3, 85
|
|
out_item_single = out_item[batch_id, :]
|
|
# get number of items in one head, [B, gx, gy, anchors, 5+80]
|
|
dimensions = out_item_single.shape[:-1]
|
|
out_num = 1
|
|
for d in dimensions:
|
|
out_num *= d
|
|
ori_w, ori_h = image_shape[batch_id]
|
|
img_id = int(image_id[batch_id])
|
|
x = out_item_single[..., 0] * ori_w
|
|
y = out_item_single[..., 1] * ori_h
|
|
w = out_item_single[..., 2] * ori_w
|
|
h = out_item_single[..., 3] * ori_h
|
|
|
|
conf = out_item_single[..., 4:5]
|
|
cls_emb = out_item_single[..., 5:]
|
|
|
|
cls_argmax = np.expand_dims(np.argmax(cls_emb, axis=-1), axis=-1)
|
|
x = x.reshape(-1)
|
|
y = y.reshape(-1)
|
|
w = w.reshape(-1)
|
|
h = h.reshape(-1)
|
|
cls_emb = cls_emb.reshape(-1, 80)
|
|
conf = conf.reshape(-1)
|
|
cls_argmax = cls_argmax.reshape(-1)
|
|
|
|
x_top_left = x - w / 2.
|
|
y_top_left = y - h / 2.
|
|
# create all False
|
|
flag = np.random.random(cls_emb.shape) > sys.maxsize
|
|
for i in range(flag.shape[0]):
|
|
c = cls_argmax[i]
|
|
flag[i, c] = True
|
|
confidence = cls_emb[flag] * conf
|
|
for x_lefti, y_lefti, wi, hi, confi, clsi in zip(x_top_left, y_top_left, w, h, confidence, cls_argmax):
|
|
if confi < self.ignore_threshold:
|
|
continue
|
|
if img_id not in self.results:
|
|
self.results[img_id] = defaultdict(list)
|
|
x_lefti = max(0, x_lefti)
|
|
y_lefti = max(0, y_lefti)
|
|
wi = min(wi, ori_w)
|
|
hi = min(hi, ori_h)
|
|
# transform catId to match coco
|
|
coco_clsi = self.coco_catIds[clsi]
|
|
self.results[img_id][coco_clsi].append([x_lefti, y_lefti, wi, hi, confi])
|
|
|
|
|
|
def parse_args():
|
|
"""Parse arguments."""
|
|
parser = argparse.ArgumentParser('mindspore coco testing')
|
|
|
|
# dataset related
|
|
parser.add_argument('--data_dir', type=str, default="", help='Train data dir. Default: ""')
|
|
parser.add_argument('--per_batch_size', default=1, type=int, help='Batch size for per device, Default: 1')
|
|
|
|
# network related
|
|
parser.add_argument('--pretrained', default="", type=str,\
|
|
help='The model path, local pretrained model to load, Default: ""')
|
|
|
|
# logging related
|
|
parser.add_argument('--log_path', type=str, default="outputs/", help='Log save location, Default: "outputs/"')
|
|
|
|
# detect_related
|
|
parser.add_argument('--nms_thresh', type=float, default=0.5, help='Threshold for NMS. Default: 0.5')
|
|
parser.add_argument('--annFile', type=str, default="", help='The path to annotation. Default: ""')
|
|
parser.add_argument('--testing_shape', type=str, default="", help='Shape for test. Default: ""')
|
|
parser.add_argument('--ignore_threshold', type=float, default=0.001,\
|
|
help='Threshold to throw low quality boxes, Default: 0.001')
|
|
|
|
args, _ = parser.parse_known_args()
|
|
|
|
args.data_root = os.path.join(args.data_dir, 'val2014')
|
|
args.annFile = os.path.join(args.data_dir, 'annotations/instances_val2014.json')
|
|
|
|
return args
|
|
|
|
|
|
def conver_testing_shape(args):
|
|
"""Convert testing shape to list."""
|
|
testing_shape = [int(args.testing_shape), int(args.testing_shape)]
|
|
return testing_shape
|
|
|
|
|
|
def test():
|
|
"""The function of eval."""
|
|
start_time = time.time()
|
|
args = parse_args()
|
|
|
|
# logger
|
|
args.outputs_dir = os.path.join(args.log_path,
|
|
datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
|
|
rank_id = int(os.environ.get('RANK_ID'))
|
|
args.logger = get_logger(args.outputs_dir, rank_id)
|
|
|
|
context.reset_auto_parallel_context()
|
|
parallel_mode = ParallelMode.STAND_ALONE
|
|
context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=1)
|
|
|
|
args.logger.info('Creating Network....')
|
|
network = YOLOV3DarkNet53(is_training=False)
|
|
|
|
config = ConfigYOLOV3DarkNet53()
|
|
if args.testing_shape:
|
|
config.test_img_shape = conver_testing_shape(args)
|
|
|
|
# convert fusion network to quantization aware network
|
|
if config.quantization_aware:
|
|
quantizer = QuantizationAwareTraining(bn_fold=True,
|
|
per_channel=[True, False],
|
|
symmetric=[True, False])
|
|
network = quantizer.quantize(network)
|
|
|
|
args.logger.info(args.pretrained)
|
|
if os.path.isfile(args.pretrained):
|
|
param_dict = load_checkpoint(args.pretrained)
|
|
param_dict_new = {}
|
|
for key, values in param_dict.items():
|
|
if key.startswith('moments.'):
|
|
continue
|
|
elif key.startswith('yolo_network.'):
|
|
param_dict_new[key[13:]] = values
|
|
else:
|
|
param_dict_new[key] = values
|
|
load_param_into_net(network, param_dict_new)
|
|
args.logger.info('load_model {} success'.format(args.pretrained))
|
|
else:
|
|
args.logger.info('{} not exists or not a pre-trained file'.format(args.pretrained))
|
|
assert FileNotFoundError('{} not exists or not a pre-trained file'.format(args.pretrained))
|
|
exit(1)
|
|
|
|
data_root = args.data_root
|
|
ann_file = args.annFile
|
|
|
|
ds, data_size = create_yolo_dataset(data_root, ann_file, is_training=False, batch_size=args.per_batch_size,
|
|
max_epoch=1, device_num=1, rank=rank_id, shuffle=False,
|
|
config=config)
|
|
|
|
args.logger.info('testing shape : {}'.format(config.test_img_shape))
|
|
args.logger.info('totol {} images to eval'.format(data_size))
|
|
|
|
network.set_train(False)
|
|
|
|
# init detection engine
|
|
detection = DetectionEngine(args)
|
|
|
|
input_shape = Tensor(tuple(config.test_img_shape), ms.float32)
|
|
args.logger.info('Start inference....')
|
|
for i, data in enumerate(ds.create_dict_iterator(num_epochs=1)):
|
|
image = data["image"]
|
|
|
|
image_shape = data["image_shape"]
|
|
image_id = data["img_id"]
|
|
|
|
prediction = network(image, input_shape)
|
|
output_big, output_me, output_small = prediction
|
|
output_big = output_big.asnumpy()
|
|
output_me = output_me.asnumpy()
|
|
output_small = output_small.asnumpy()
|
|
image_id = image_id.asnumpy()
|
|
image_shape = image_shape.asnumpy()
|
|
|
|
detection.detect([output_small, output_me, output_big], args.per_batch_size, image_shape, image_id)
|
|
if i % 1000 == 0:
|
|
args.logger.info('Processing... {:.2f}% '.format(i * args.per_batch_size / data_size * 100))
|
|
|
|
args.logger.info('Calculating mAP...')
|
|
detection.do_nms_for_results()
|
|
result_file_path = detection.write_result()
|
|
args.logger.info('result file path: {}'.format(result_file_path))
|
|
eval_result = detection.get_eval_result()
|
|
|
|
cost_time = time.time() - start_time
|
|
args.logger.info('\n=============coco eval reulst=========\n' + eval_result)
|
|
args.logger.info('testing cost time {:.2f}h'.format(cost_time / 3600.))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test()
|