You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/research/cv/MaskedFaceRecognition/train.py

106 lines
3.7 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_imagenet."""
import sys
import argparse
import random
import pickle
import numpy as np
from train_dataset import create_dataset
from config import config
from mindspore import context
from mindspore.nn.dynamic_lr import piecewise_constant_lr, warmup_lr
from mindspore.train.model import Model
from mindspore.train.serialization import load_param_into_net
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor # TimeMonitor
import mindspore.dataset.engine as de
from mindspore.nn.metrics import Accuracy
from model.model import resnet50, NetWithLossClass, TrainStepWrap, TestStepWrap
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--data_url', type=str, default=None, help='Dataset path')
parser.add_argument('--train_url', type=str, default=None, help='Train output path')
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
local_data_url = 'data'
local_train_url = 'ckpt'
class Logger():
'''Logger'''
def __init__(self, logFile="log_max.txt"):
self.terminal = sys.stdout
self.log = open(logFile, 'a')
def write(self, message):
self.terminal.write(message)
self.log.write(message)
self.log.flush()
def flush(self):
pass
sys.stdout = Logger("log/log.txt")
if __name__ == '__main__':
epoch_size = config.epoch_size
net = resnet50(class_num=config.class_num, is_train=True)
loss_net = NetWithLossClass(net)
dataset = create_dataset("/home/dingfeifei/datasets/faces_webface_112x112_raw_image", \
p=config.p, k=config.k)
step_size = dataset.get_dataset_size()
base_lr = config.learning_rate
warm_up_epochs = config.lr_warmup_epochs
lr_decay_epochs = config.lr_decay_epochs
lr_decay_factor = config.lr_decay_factor
lr_decay_steps = []
lr_decay = []
for i, v in enumerate(lr_decay_epochs):
lr_decay_steps.append(v * step_size)
lr_decay.append(base_lr * lr_decay_factor ** i)
lr_1 = warmup_lr(base_lr, step_size*warm_up_epochs, step_size, warm_up_epochs)
lr_2 = piecewise_constant_lr(lr_decay_steps, lr_decay)
lr = lr_1 + lr_2
train_net = TrainStepWrap(loss_net, lr, config.momentum)
test_net = TestStepWrap(net)
f = open("checkpoints/pretrained_resnet50.pkl", "rb")
param_dict = pickle.load(f)
load_param_into_net(net=train_net, parameter_dict=param_dict)
model = Model(train_net, eval_network=test_net, metrics={"Accuracy": Accuracy()})
# time_cb = TimeMonitor(data_size=step_size)
loss_cb = LossMonitor()
#cb = [time_cb, loss_cb]
cb = [loss_cb]
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps, \
keep_checkpoint_max=config.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(prefix="resnet", directory='checkpoints/', \
config=config_ck)
cb += [ckpt_cb]
model.train(epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)