You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/ccsrc/kernel/cpu/concat_cpu_kernel.cc

107 lines
3.9 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/concat_cpu_kernel.h"
#include "device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void ConcatCPUKernel::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
axis_ = AnfAlgo::GetNodeAttr<int>(kernel_node, AXIS);
auto input_1_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
if (axis_ < 0) {
axis_ = axis_ + SizeToInt(input_1_shape.size());
}
axis_ += 4 - input_1_shape.size();
auto input_num = AnfAlgo::GetInputTensorNum(kernel_node);
for (size_t i = 0; i < input_num; i++) {
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, i);
CPUKernelUtils::ExpandDimsTo4(&input_shape);
input_shape_list_.push_back(input_shape);
}
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
CPUKernelUtils::ExpandDimsTo4(&output_shape_);
}
bool ConcatCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
auto output_addr = reinterpret_cast<float *>(outputs[0]->addr);
auto buff_size = outputs[0]->size;
size_t dim0 = output_shape_[0];
size_t dim1 = output_shape_[1];
size_t dim2 = output_shape_[2];
if (axis_ == 3) {
for (size_t i = 0; i < dim0; ++i) {
for (size_t j = 0; j < dim1; ++j) {
for (size_t k = 0; k < dim2; ++k) {
CopyDataToOutput(inputs, i, j, k, &output_addr, &buff_size);
}
}
}
} else if (axis_ == 2) {
for (size_t i = 0; i < dim0; ++i) {
for (size_t j = 0; j < dim1; ++j) {
CopyDataToOutput(inputs, i, j, 0, &output_addr, &buff_size);
}
}
} else if (axis_ == 1) {
for (size_t i = 0; i < dim0; ++i) {
CopyDataToOutput(inputs, i, 0, 0, &output_addr, &buff_size);
}
} else if (axis_ == 0) {
CopyDataToOutput(inputs, 0, 0, 0, &output_addr, &buff_size);
}
return true;
}
void ConcatCPUKernel::CopyDataToOutput(const std::vector<kernel::AddressPtr> &inputs, size_t dim0, size_t dim1,
size_t dim2, float **output_addr, size_t *buff_size) {
for (size_t i = 0; i < input_shape_list_.size(); ++i) {
auto input_i_shape = input_shape_list_[i];
auto input_i_addr = reinterpret_cast<float *>(inputs[i]->addr);
size_t num = CPUKernelUtils::GetElementNumOnAxis(input_i_shape, axis_);
num *= input_i_shape[axis_];
auto pos = CPUKernelUtils::CalcOffset(input_i_shape, dim0, dim1, dim2, 0);
auto ret = memcpy_s(*output_addr, *buff_size, input_i_addr + pos, num * sizeof(float));
if (ret != EOK) {
MS_LOG(EXCEPTION) << "memcpy failed.";
}
*output_addr += num;
*buff_size -= num * sizeof(float);
}
}
void ConcatCPUKernel::CheckParam(const CNodePtr &kernel_node) {
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
if (input_shape.size() > 4) {
MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size() << ", but ConcatCPUKernel olny support 4d or lower.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but ConcatCPUKernel needs 1 output.";
}
}
} // namespace kernel
} // namespace mindspore