You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
54 lines
2.2 KiB
54 lines
2.2 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test bert cell """
|
|
import numpy as np
|
|
import pytest
|
|
from mindspore import Model
|
|
from mindspore.nn.optim import AdamWeightDecay
|
|
from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertModel, BertNetworkWithLoss, BertTrainOneStepCell
|
|
from ....dataset_mock import MindData
|
|
|
|
|
|
def map_bert(record):
|
|
target_data = {'input_ids': None, 'input_mask': None,
|
|
'segment_ids': None, 'next_sentence_labels': None,
|
|
'masked_lm_positions': None, 'masked_lm_ids': None,
|
|
'masked_lm_weights': None}
|
|
|
|
sample = dt.parse_single_example(record, target_data)
|
|
|
|
return sample['input_ids'], sample['input_mask'], sample['segment_ids'], \
|
|
sample['next_sentence_labels'], sample['masked_lm_positions'], \
|
|
sample['masked_lm_ids'], sample['masked_lm_weights']
|
|
|
|
|
|
def test_bert_model():
|
|
# test for config.hidden_size % config.num_attention_heads != 0
|
|
config_error = BertConfig(32, hidden_size=512, num_attention_heads=10)
|
|
with pytest.raises(ValueError):
|
|
BertModel(config_error, True)
|
|
|
|
|
|
def get_dataset(batch_size=1):
|
|
dataset_types = (np.int32, np.int32, np.int32, np.int32, np.int32, np.int32, np.int32)
|
|
dataset_shapes = ((batch_size, 128), (batch_size, 128), (batch_size, 128), (batch_size, 1),
|
|
(batch_size, 20), (batch_size, 20), (batch_size, 20))
|
|
|
|
dataset = MindData(size=2, batch_size=batch_size,
|
|
np_types=dataset_types,
|
|
output_shapes=dataset_shapes,
|
|
input_indexs=(0, 1))
|
|
return dataset
|