You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_arithmetic.py

473 lines
16 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from mindspore import context
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor
from tests.ut.python.ops.test_math_ops import VirtualLoss
import mindspore as ms
from mindspore.common.api import _executor
from mindspore.ops import composite as C
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
def test_matmul_sub():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.sub = P.Sub().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.sub(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_add():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.add = P.TensorAdd().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.add(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_mul():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.mul = P.Mul().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.mul(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_div():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.div = P.Div().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.div(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_greater():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.greater = P.Greater().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.greater(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_add_broadcast():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.add = P.TensorAdd().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.add(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (2, ))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_add_broadcast2():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.add = P.TensorAdd().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.add(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 4), (4, 1))
strategy2 = ((4, 1), (1, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_sub_broadcast():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.sub = P.Sub().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.sub(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (2, ))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_sub_broadcast2():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.sub = P.Sub().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.sub(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 4), (4, 1))
strategy2 = ((4, 1), (1, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_mul_broadcast():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.mul = P.Mul().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.mul(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (2, ))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_mul_broadcast2():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.mul = P.Mul().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.mul(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 4), (4, 1))
strategy2 = ((4, 1), (1, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_div_broadcast():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.div = P.Div().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.div(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (2, ))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_div_broadcast2():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.div = P.Div().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.div(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 4), (4, 1))
strategy2 = ((4, 1), (1, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_greater_broadcast():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.greater = P.Greater().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.greater(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (2, ))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_greater_broadcast2():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.greater = P.Greater().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.greater(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 4), (4, 1))
strategy2 = ((4, 1), (1, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_floordiv():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.floordiv = P.FloorDiv().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.floordiv(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_floordiv_broadcast():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.floordiv = P.FloorDiv().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.floordiv(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (2, ))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64]), dtype=ms.float32)
_executor.compile(net, x, y, b)
def test_matmul_floordiv_broadcast2():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.floordiv = P.FloorDiv().set_strategy(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.floordiv(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 4), (4, 1))
strategy2 = ((4, 1), (1, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
_executor.compile(net, x, y, b)