You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
205 lines
5.7 KiB
205 lines
5.7 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test_grad """
|
|
import numpy as np
|
|
import mindspore as ms
|
|
from mindspore.common.api import ms_function
|
|
from mindspore import Tensor
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops.composite import grad_all_with_sens
|
|
import mindspore.nn as nn
|
|
import mindspore.ops.operations as P
|
|
from ...ut_filter import non_graph_engine
|
|
|
|
|
|
def mul(x, y):
|
|
return x * y
|
|
|
|
|
|
@ms_function
|
|
def mainf(x, y):
|
|
return C.grad(mul)(x, y)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_grad():
|
|
mainf(1, 2)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_expand_dims_grad():
|
|
""" test_expand_dims_grad """
|
|
input_tensor = Tensor(np.array([[2, 2], [2, 2]]))
|
|
expand_dims = P.ExpandDims()
|
|
|
|
def fn(x):
|
|
output = expand_dims(x, 0)
|
|
return output
|
|
|
|
out = fn(input_tensor)
|
|
gfn = grad_all_with_sens(fn)
|
|
sens = Tensor(np.ones_like(out.asnumpy()))
|
|
args = [input_tensor, sens]
|
|
gout = gfn(*args)
|
|
expect = np.ones([2, 2])
|
|
assert np.all(gout[0].asnumpy() == expect)
|
|
|
|
|
|
def test_cast_grad():
|
|
""" test_cast_grad """
|
|
input_np = np.random.randn(2, 3).astype(np.float32)
|
|
input_x = Tensor(input_np)
|
|
|
|
td = ms.int32
|
|
cast = P.Cast()
|
|
|
|
def fn(x):
|
|
output = cast(x, td)
|
|
return output
|
|
|
|
out = fn(input_x)
|
|
gfn = grad_all_with_sens(fn)
|
|
sens = Tensor(np.ones_like(out.asnumpy()))
|
|
args = [input_x, sens]
|
|
gout = gfn(*args)
|
|
expect = np.ones((2, 3), dtype=np.float32)
|
|
assert np.all(gout[0].asnumpy() == expect)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_reshape_grad():
|
|
""" test_reshape_grad """
|
|
input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]))
|
|
shp = (3, 2)
|
|
reshape = P.Reshape()
|
|
|
|
def fn(x):
|
|
output = reshape(x, shp)
|
|
return output
|
|
|
|
out = fn(input_tensor)
|
|
gfn = grad_all_with_sens(fn)
|
|
sens = Tensor(np.ones_like(out.asnumpy()))
|
|
args = [input_tensor, sens]
|
|
gout = gfn(*args)
|
|
expect = np.ones([2, 3])
|
|
assert np.all(gout[0].asnumpy() == expect)
|
|
|
|
|
|
def test_transpose_grad():
|
|
""" test_transpose_grad """
|
|
input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
|
|
perm = (0, 2, 1)
|
|
transpose = P.Transpose()
|
|
|
|
def fn(x):
|
|
output = transpose(x, perm)
|
|
return output
|
|
|
|
out = fn(input_tensor)
|
|
gfn = grad_all_with_sens(fn)
|
|
sens = Tensor(np.ones_like(out.asnumpy()))
|
|
args = [input_tensor, sens]
|
|
gout = gfn(*args)
|
|
expect = np.ones([2, 2, 3])
|
|
assert np.all(gout[0].asnumpy() == expect)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_squeeze_grad():
|
|
""" test_squeeze_grad """
|
|
input_tensor = Tensor(np.ones(shape=[3, 2, 1]))
|
|
squeeze = P.Squeeze(2)
|
|
|
|
def fn(x):
|
|
output = squeeze(x)
|
|
return output
|
|
|
|
out = fn(input_tensor)
|
|
gfn = grad_all_with_sens(fn)
|
|
sens = Tensor(np.ones_like(out.asnumpy()))
|
|
args = [input_tensor, sens]
|
|
gout = gfn(*args)
|
|
expect = np.ones([3, 2, 1])
|
|
assert np.all(gout[0].asnumpy() == expect)
|
|
|
|
|
|
def test_select_grad():
|
|
""" test_select_grad """
|
|
select = P.Select()
|
|
cond = Tensor(np.array([[True, False, False], [False, True, True]]))
|
|
x = Tensor(np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32))
|
|
y = Tensor(np.array([[7, 8, 9], [10, 11, 12]]).astype(np.float32))
|
|
|
|
def fn(cond, x, y):
|
|
output = select(cond, x, y)
|
|
return output
|
|
|
|
out = fn(cond, x, y)
|
|
gfn = grad_all_with_sens(fn)
|
|
sens = Tensor(np.ones_like(out.asnumpy()).astype(np.float32))
|
|
args = [cond, x, y, sens]
|
|
gout = gfn(*args)
|
|
expect_cond = np.zeros_like(cond)
|
|
expect_x = np.array([[1, 0, 0], [0, 1, 1]])
|
|
expect_y = np.array([[0, 1, 1], [1, 0, 0]])
|
|
assert np.all(gout[0].asnumpy() == expect_cond)
|
|
assert np.all(gout[1].asnumpy() == expect_x)
|
|
assert np.all(gout[2].asnumpy() == expect_y)
|
|
|
|
|
|
def test_SubGrad():
|
|
""" test_SubGrad """
|
|
input_x = Tensor(np.array([[2, 2]]))
|
|
input_y = Tensor(np.array([[2, 2], [2, 2]]))
|
|
sub = P.Sub()
|
|
|
|
def fn(x, y):
|
|
output = sub(x, y)
|
|
return output
|
|
|
|
out = fn(input_x, input_y)
|
|
gfn = grad_all_with_sens(fn)
|
|
sens = Tensor(np.ones_like(out.asnumpy()))
|
|
args = [input_x, input_y, sens]
|
|
gout = gfn(*args)
|
|
expect_dx = np.ones([1, 2]).astype(np.int32) * 2 # reduce sum dout to the shape of x
|
|
expect_dy = np.ones([2, 2]).astype(np.int32) * (-1)
|
|
assert np.array_equal(gout[0].asnumpy(), expect_dx)
|
|
assert np.array_equal(gout[1].asnumpy(), expect_dy)
|
|
|
|
|
|
def test_MulGrad():
|
|
""" test_MulGrad """
|
|
input_x = Tensor(np.array([[2, 2], [2, 2]], np.float32))
|
|
input_y = Tensor(np.array([[3, 3], [3, 3]], np.float32))
|
|
mul = P.Mul()
|
|
|
|
def fn(x, y):
|
|
output = mul(x, y)
|
|
return output
|
|
|
|
out = fn(input_x, input_y)
|
|
gfn = grad_all_with_sens(fn)
|
|
sens = Tensor(np.ones_like(out.asnumpy()) * 3)
|
|
args = [input_x, input_y, sens]
|
|
gout = gfn(*args)
|
|
expect_dx = np.ones([2, 2], np.float32) * 9
|
|
expect_dy = np.ones([2, 2], np.float32) * 6
|
|
assert np.all(gout[0].asnumpy().shape == expect_dx.shape)
|
|
assert np.all(gout[0].asnumpy() == expect_dx)
|
|
assert np.all(gout[1].asnumpy().shape == expect_dy.shape)
|
|
assert np.all(gout[1].asnumpy() == expect_dy)
|