|
|
/**
|
|
|
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
|
|
*
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
* You may obtain a copy of the License at
|
|
|
*
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
*
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
* See the License for the specific language governing permissions and
|
|
|
* limitations under the License.
|
|
|
*/
|
|
|
#include <memory>
|
|
|
#include <vector>
|
|
|
#include <string>
|
|
|
|
|
|
#include "common/common.h"
|
|
|
#include "include/api/status.h"
|
|
|
#include "minddata/dataset/include/config.h"
|
|
|
#include "minddata/dataset/include/datasets.h"
|
|
|
#include "minddata/dataset/include/text.h"
|
|
|
#include "minddata/dataset/include/transforms.h"
|
|
|
#include "minddata/dataset/text/vocab.h"
|
|
|
|
|
|
using namespace mindspore::dataset;
|
|
|
using mindspore::Status;
|
|
|
using mindspore::dataset::ShuffleMode;
|
|
|
using mindspore::dataset::Tensor;
|
|
|
using mindspore::dataset::Vocab;
|
|
|
|
|
|
class MindDataTestPipeline : public UT::DatasetOpTesting {
|
|
|
protected:
|
|
|
};
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestBasicTokenizerSuccess1) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBasicTokenizerSuccess1.";
|
|
|
// Test BasicTokenizer with default parameters
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/basic_tokenizer.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Take operation on ds
|
|
|
ds = ds->Take(6);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create BasicTokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> basic_tokenizer = std::make_shared<text::BasicTokenizer>();
|
|
|
EXPECT_NE(basic_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({basic_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {
|
|
|
// {"Welcome", "to", "Beijing", "北", "京", "欢", "迎", "您"},
|
|
|
// {"長", "風", "破", "浪", "會", "有", "時", ",", "直", "掛", "雲", "帆", "濟", "滄", "海"},
|
|
|
// {"😀", "嘿", "嘿", "😃", "哈", "哈", "😄", "大", "笑", "😁", "嘻", "嘻"},
|
|
|
// {"明", "朝", "(", "1368", "—", "1644", "年", ")", "和", "清", "朝", "(", "1644", "—", "1911", "年", ")",
|
|
|
// ",", "是", "中", "国", "封", "建", "王", "朝", "史", "上", "最", "后", "两", "个", "朝", "代"},
|
|
|
// {"明", "代", "(", "1368", "-", "1644", ")", "と", "清", "代", "(", "1644",
|
|
|
// "-", "1911", ")", "は", "、", "中", "国", "の", "封", "建", "王", "朝",
|
|
|
// "の", "歴", "史", "における", "最", "後", "の2つの", "王", "朝", "でした"},
|
|
|
// {"명나라", "(", "1368", "-", "1644", ")", "와", "청나라", "(", "1644", "-",
|
|
|
// "1911", ")", "는", "중국", "봉건", "왕조의", "역사에서", "마지막", "두", "왕조였다"}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected[i], &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 6);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestBasicTokenizerSuccess2) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBasicTokenizerSuccess2.";
|
|
|
// Test BasicTokenizer with lower_case true
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/basic_tokenizer.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Skip operation on ds
|
|
|
ds = ds->Skip(6);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create BasicTokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> basic_tokenizer = std::make_shared<text::BasicTokenizer>(true);
|
|
|
EXPECT_NE(basic_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({basic_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"this", "is", "a", "funky", "string"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected, &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestBasicTokenizerSuccess3) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBasicTokenizerSuccess3.";
|
|
|
// Test BasicTokenizer with with_offsets true and lower_case true
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/basic_tokenizer.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Skip operation on ds
|
|
|
ds = ds->Skip(6);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create BasicTokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> basic_tokenizer =
|
|
|
std::make_shared<text::BasicTokenizer>(true, false, NormalizeForm::kNone, true, true);
|
|
|
EXPECT_NE(basic_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({basic_tokenizer}, {"text"}, {"token", "offsets_start", "offsets_limit"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
std::vector<std::string> expected_tokens = {"this", "is", "a", "funky", "string"};
|
|
|
std::vector<uint32_t> expected_offsets_start = {0, 5, 8, 10, 16};
|
|
|
std::vector<uint32_t> expected_offsets_limit = {4, 7, 9, 15, 22};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["token"];
|
|
|
// mindspore::MSTensor expected_token_tensor;
|
|
|
// Tensor::CreateFromVector(expected_tokens, &expected_token_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_token_tensor);
|
|
|
// auto start = row["offsets_start"];
|
|
|
// mindspore::MSTensor expected_start_tensor;
|
|
|
// Tensor::CreateFromVector(expected_offsets_start, &expected_start_tensor);
|
|
|
// EXPECT_EQ(*start, *expected_start_tensor);
|
|
|
// auto limit = row["offsets_limit"];
|
|
|
// mindspore::MSTensor expected_limit_tensor;
|
|
|
// Tensor::CreateFromVector(expected_offsets_limit, &expected_limit_tensor);
|
|
|
// EXPECT_EQ(*limit, *expected_limit_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
std::vector<std::string> list = {
|
|
|
"床", "前", "明", "月", "光", "疑", "是", "地", "上", "霜", "举", "头",
|
|
|
"望", "低", "思", "故", "乡", "繁", "體", "字", "嘿", "哈", "大", "笑",
|
|
|
"嘻", "i", "am", "mak", "make", "small", "mistake", "##s", "during", "work", "##ing", "hour",
|
|
|
"😀", "😃", "😄", "😁", "+", "/", "-", "=", "12", "28", "40", "16",
|
|
|
" ", "I", "[CLS]", "[SEP]", "[UNK]", "[PAD]", "[MASK]", "[unused1]", "[unused10]"};
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestBertTokenizerSuccess1) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBertTokenizerSuccess1.";
|
|
|
// Test BertTokenizer with default parameters
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/bert_tokenizer.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Take operation on ds
|
|
|
ds = ds->Take(4);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a vocab from vector
|
|
|
std::shared_ptr<Vocab> vocab = std::make_shared<Vocab>();
|
|
|
Status s = Vocab::BuildFromVector(list, {}, true, &vocab);
|
|
|
EXPECT_EQ(s, Status::OK());
|
|
|
|
|
|
// Create BertTokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> bert_tokenizer = std::make_shared<text::BertTokenizer>(vocab);
|
|
|
EXPECT_NE(bert_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({bert_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {{"床", "前", "明", "月", "光"},
|
|
|
// {"疑", "是", "地", "上", "霜"},
|
|
|
// {"举", "头", "望", "明", "月"},
|
|
|
// {"低", "头", "思", "故", "乡"}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected[i], &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 4);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestBertTokenizerSuccess2) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBertTokenizerSuccess2.";
|
|
|
// Test BertTokenizer with lower_case true
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/bert_tokenizer.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Skip operation on ds
|
|
|
ds = ds->Skip(4);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Take operation on ds
|
|
|
ds = ds->Take(1);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a vocab from vector
|
|
|
std::shared_ptr<Vocab> vocab = std::make_shared<Vocab>();
|
|
|
Status s = Vocab::BuildFromVector(list, {}, true, &vocab);
|
|
|
EXPECT_EQ(s, Status::OK());
|
|
|
|
|
|
// Create BertTokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> bert_tokenizer =
|
|
|
std::make_shared<text::BertTokenizer>(vocab, "##", 100, "[UNK]", true);
|
|
|
EXPECT_NE(bert_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({bert_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"i", "am", "mak", "##ing", "small", "mistake",
|
|
|
// "##s", "during", "work", "##ing", "hour", "##s"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected, &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestBertTokenizerSuccess3) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBertTokenizerSuccess3.";
|
|
|
// Test BertTokenizer with normalization_form NFKC
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/bert_tokenizer.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Skip operation on ds
|
|
|
ds = ds->Skip(5);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Take operation on ds
|
|
|
ds = ds->Take(2);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a vocab from vector
|
|
|
std::shared_ptr<Vocab> vocab = std::make_shared<Vocab>();
|
|
|
Status s = Vocab::BuildFromVector(list, {}, true, &vocab);
|
|
|
EXPECT_EQ(s, Status::OK());
|
|
|
|
|
|
// Create BertTokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> bert_tokenizer =
|
|
|
std::make_shared<text::BertTokenizer>(vocab, "##", 100, "[UNK]", false, false, NormalizeForm::kNfc);
|
|
|
EXPECT_NE(bert_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({bert_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {
|
|
|
// {"😀", "嘿", "嘿", "😃", "哈", "哈", "😄", "大", "笑", "😁", "嘻", "嘻"}, {"繁", "體", "字"}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected[i], &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 2);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestBertTokenizerSuccess4) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBertTokenizerSuccess4.";
|
|
|
// Test BertTokenizer with keep_whitespace true
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/bert_tokenizer.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Skip operation on ds
|
|
|
ds = ds->Skip(7);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Take operation on ds
|
|
|
ds = ds->Take(1);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a vocab from vector
|
|
|
std::shared_ptr<Vocab> vocab = std::make_shared<Vocab>();
|
|
|
Status s = Vocab::BuildFromVector(list, {}, true, &vocab);
|
|
|
EXPECT_EQ(s, Status::OK());
|
|
|
|
|
|
// Create BertTokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> bert_tokenizer =
|
|
|
std::make_shared<text::BertTokenizer>(vocab, "##", 100, "[UNK]", false, true);
|
|
|
EXPECT_NE(bert_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({bert_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"[UNK]", " ", "[CLS]"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected, &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestBertTokenizerSuccess5) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBertTokenizerSuccess5.";
|
|
|
// Test BertTokenizer with unknown_token empty and keep_whitespace true
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/bert_tokenizer.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Skip operation on ds
|
|
|
ds = ds->Skip(7);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Take operation on ds
|
|
|
ds = ds->Take(1);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a vocab from vector
|
|
|
std::shared_ptr<Vocab> vocab = std::make_shared<Vocab>();
|
|
|
Status s = Vocab::BuildFromVector(list, {}, true, &vocab);
|
|
|
EXPECT_EQ(s, Status::OK());
|
|
|
|
|
|
// Create BertTokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> bert_tokenizer =
|
|
|
std::make_shared<text::BertTokenizer>(vocab, "##", 100, "", false, true);
|
|
|
EXPECT_NE(bert_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({bert_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"unused", " ", "[CLS]"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected, &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestBertTokenizerSuccess6) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBertTokenizerSuccess6.";
|
|
|
// Test BertTokenizer with preserve_unused_token false, unknown_token empty and keep_whitespace true
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/bert_tokenizer.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Skip operation on ds
|
|
|
ds = ds->Skip(7);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Take operation on ds
|
|
|
ds = ds->Take(1);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a vocab from vector
|
|
|
std::shared_ptr<Vocab> vocab = std::make_shared<Vocab>();
|
|
|
Status s = Vocab::BuildFromVector(list, {}, true, &vocab);
|
|
|
EXPECT_EQ(s, Status::OK());
|
|
|
|
|
|
// Create BertTokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> bert_tokenizer =
|
|
|
std::make_shared<text::BertTokenizer>(vocab, "##", 100, "", false, true, NormalizeForm::kNone, false);
|
|
|
EXPECT_NE(bert_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({bert_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"unused", " ", "[", "CLS", "]"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected, &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestBertTokenizerSuccess7) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBertTokenizerSuccess7.";
|
|
|
// Test BertTokenizer with with_offsets true and lower_case true
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/bert_tokenizer.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Skip operation on ds
|
|
|
ds = ds->Skip(4);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create Take operation on ds
|
|
|
ds = ds->Take(1);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a vocab from vector
|
|
|
std::shared_ptr<Vocab> vocab = std::make_shared<Vocab>();
|
|
|
Status s = Vocab::BuildFromVector(list, {}, true, &vocab);
|
|
|
EXPECT_EQ(s, Status::OK());
|
|
|
|
|
|
// Create BertTokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> bert_tokenizer =
|
|
|
std::make_shared<text::BertTokenizer>(vocab, "##", 100, "[UNK]", true, false, NormalizeForm::kNone, true, true);
|
|
|
EXPECT_NE(bert_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({bert_tokenizer}, {"text"}, {"token", "offsets_start", "offsets_limit"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected_tokens = {"i", "am", "mak", "##ing", "small", "mistake",
|
|
|
// "##s", "during", "work", "##ing", "hour", "##s"};
|
|
|
// std::vector<uint32_t> expected_offsets_start = {0, 2, 5, 8, 12, 18, 25, 27, 34, 38, 42, 46};
|
|
|
// std::vector<uint32_t> expected_offsets_limit = {1, 4, 8, 11, 17, 25, 26, 33, 38, 41, 46, 47};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["token"];
|
|
|
// mindspore::MSTensor expected_token_tensor;
|
|
|
// Tensor::CreateFromVector(expected_tokens, &expected_token_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_token_tensor);
|
|
|
// auto start = row["offsets_start"];
|
|
|
// mindspore::MSTensor expected_start_tensor;
|
|
|
// Tensor::CreateFromVector(expected_offsets_start, &expected_start_tensor);
|
|
|
// EXPECT_EQ(*start, *expected_start_tensor);
|
|
|
// auto limit = row["offsets_limit"];
|
|
|
// mindspore::MSTensor expected_limit_tensor;
|
|
|
// Tensor::CreateFromVector(expected_offsets_limit, &expected_limit_tensor);
|
|
|
// EXPECT_EQ(*limit, *expected_limit_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestBertTokenizerFail1) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBertTokenizerFail1.";
|
|
|
// Test BertTokenizer with nullptr vocab
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/bert_tokenizer.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create BertTokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> bert_tokenizer = std::make_shared<text::BertTokenizer>(nullptr);
|
|
|
EXPECT_NE(bert_tokenizer, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({bert_tokenizer});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid BertTokenizer input with nullptr vocab
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestBertTokenizerFail2) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBertTokenizerFail2.";
|
|
|
// Test BertTokenizer with negative max_bytes_per_token
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/bert_tokenizer.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a vocab from vector
|
|
|
std::shared_ptr<Vocab> vocab = std::make_shared<Vocab>();
|
|
|
Status s = Vocab::BuildFromVector(list, {}, true, &vocab);
|
|
|
EXPECT_EQ(s, Status::OK());
|
|
|
|
|
|
// Create BertTokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> bert_tokenizer = std::make_shared<text::BertTokenizer>(vocab, "##", -1);
|
|
|
EXPECT_NE(bert_tokenizer, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({bert_tokenizer});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid BertTokenizer input with nullptr vocab
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestCaseFoldSuccess) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCaseFoldSuccess.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create casefold operation on ds
|
|
|
std::shared_ptr<TensorTransform> casefold = std::make_shared<text::CaseFold>();
|
|
|
EXPECT_NE(casefold, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({casefold}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"welcome to beijing!", "北京欢迎您!", "我喜欢english!", " "};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateScalar(expected[i], &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 4);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestJiebaTokenizerSuccess) {
|
|
|
// Testing the parameter of JiebaTokenizer interface when the mode is JiebaMode::kMp and the with_offsets is false.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestJiebaTokenizerSuccess.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testJiebaDataset/3.txt";
|
|
|
std::string hmm_path = datasets_root_path_ + "/jiebadict/hmm_model.utf8";
|
|
|
std::string mp_path = datasets_root_path_ + "/jiebadict/jieba.dict.utf8";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create jieba_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> jieba_tokenizer =
|
|
|
std::make_shared<text::JiebaTokenizer>(hmm_path, mp_path, JiebaMode::kMp);
|
|
|
EXPECT_NE(jieba_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({jieba_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"今天天气", "太好了", "我们", "一起", "去", "外面", "玩吧"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected, &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestJiebaTokenizerSuccess1) {
|
|
|
// Testing the parameter of JiebaTokenizer interface when the mode is JiebaMode::kHmm and the with_offsets is false.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestJiebaTokenizerSuccess1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testJiebaDataset/3.txt";
|
|
|
std::string hmm_path = datasets_root_path_ + "/jiebadict/hmm_model.utf8";
|
|
|
std::string mp_path = datasets_root_path_ + "/jiebadict/jieba.dict.utf8";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create jieba_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> jieba_tokenizer =
|
|
|
std::make_shared<text::JiebaTokenizer>(hmm_path, mp_path, JiebaMode::kHmm);
|
|
|
EXPECT_NE(jieba_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({jieba_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"今天", "天气", "太", "好", "了", "我们", "一起", "去", "外面", "玩", "吧"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected, &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestJiebaTokenizerSuccess2) {
|
|
|
// Testing the parameter of JiebaTokenizer interface when the mode is JiebaMode::kMp and the with_offsets is true.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestJiebaTokenizerSuccess2.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testJiebaDataset/3.txt";
|
|
|
std::string hmm_path = datasets_root_path_ + "/jiebadict/hmm_model.utf8";
|
|
|
std::string mp_path = datasets_root_path_ + "/jiebadict/jieba.dict.utf8";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create jieba_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> jieba_tokenizer =
|
|
|
std::make_shared<text::JiebaTokenizer>(hmm_path, mp_path, JiebaMode::kMp, true);
|
|
|
EXPECT_NE(jieba_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({jieba_tokenizer}, {"text"}, {"token", "offsets_start", "offsets_limit"},
|
|
|
{"token", "offsets_start", "offsets_limit"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"今天天气", "太好了", "我们", "一起", "去", "外面", "玩吧"};
|
|
|
|
|
|
// std::vector<uint32_t> expected_offsets_start = {0, 12, 21, 27, 33, 36, 42};
|
|
|
// std::vector<uint32_t> expected_offsets_limit = {12, 21, 27, 33, 36, 42, 48};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["offsets_start"];
|
|
|
// auto ind1 = row["offsets_limit"];
|
|
|
// auto token = row["token"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// mindspore::MSTensor expected_tensor_offsets_start;
|
|
|
// mindspore::MSTensor expected_tensor_offsets_limit;
|
|
|
// Tensor::CreateFromVector(expected, &expected_tensor);
|
|
|
// Tensor::CreateFromVector(expected_offsets_start, &expected_tensor_offsets_start);
|
|
|
// Tensor::CreateFromVector(expected_offsets_limit, &expected_tensor_offsets_limit);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor_offsets_start);
|
|
|
// EXPECT_EQ(*ind1, *expected_tensor_offsets_limit);
|
|
|
// EXPECT_EQ(*token, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestJiebaTokenizerFail1) {
|
|
|
// Testing the incorrect parameter of JiebaTokenizer interface.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestJiebaTokenizerFail1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testJiebaDataset/3.txt";
|
|
|
std::string mp_path = datasets_root_path_ + "/jiebadict/jieba.dict.utf8";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create jieba_tokenizer operation on ds
|
|
|
// Testing the parameter hmm_path is empty
|
|
|
std::shared_ptr<TensorTransform> jieba_tokenizer =
|
|
|
std::make_shared<text::JiebaTokenizer>("", mp_path, JiebaMode::kMp);
|
|
|
EXPECT_NE(jieba_tokenizer, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({jieba_tokenizer});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid JiebaTokenizer input (parameter hmm_path is empty)
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestJiebaTokenizerFail2) {
|
|
|
// Testing the incorrect parameter of JiebaTokenizer interface.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestJiebaTokenizerFail2.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testJiebaDataset/3.txt";
|
|
|
std::string hmm_path = datasets_root_path_ + "/jiebadict/hmm_model.utf8";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create jieba_tokenizer operation on ds
|
|
|
// Testing the parameter mp_path is empty
|
|
|
std::shared_ptr<TensorTransform> jieba_tokenizer =
|
|
|
std::make_shared<text::JiebaTokenizer>(hmm_path, "", JiebaMode::kMp);
|
|
|
EXPECT_NE(jieba_tokenizer, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({jieba_tokenizer});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid JiebaTokenizer input (parameter mp_path is empty)
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestJiebaTokenizerFail3) {
|
|
|
// Testing the incorrect parameter of JiebaTokenizer interface.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestJiebaTokenizerFail3.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testJiebaDataset/3.txt";
|
|
|
std::string hmm_path_invalid = datasets_root_path_ + "/jiebadict/1.txt";
|
|
|
std::string mp_path = datasets_root_path_ + "/jiebadict/jieba.dict.utf8";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create jieba_tokenizer operation on ds
|
|
|
// Testing the parameter hmm_path is invalid path
|
|
|
std::shared_ptr<TensorTransform> jieba_tokenizer =
|
|
|
std::make_shared<text::JiebaTokenizer>(hmm_path_invalid, mp_path, JiebaMode::kMp);
|
|
|
EXPECT_NE(jieba_tokenizer, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({jieba_tokenizer});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid JiebaTokenizer input (parameter hmm_path is invalid path)
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestJiebaTokenizerFail4) {
|
|
|
// Testing the incorrect parameter of JiebaTokenizer interface.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestJiebaTokenizerFail4.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testJiebaDataset/3.txt";
|
|
|
std::string hmm_path = datasets_root_path_ + "/jiebadict/hmm_model.utf8";
|
|
|
std::string mp_path_invalid = datasets_root_path_ + "/jiebadict/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create jieba_tokenizer operation on ds
|
|
|
// Testing the parameter mp_path is invalid path
|
|
|
std::shared_ptr<TensorTransform> jieba_tokenizer =
|
|
|
std::make_shared<text::JiebaTokenizer>(hmm_path, mp_path_invalid, JiebaMode::kMp);
|
|
|
EXPECT_NE(jieba_tokenizer, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({jieba_tokenizer});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid JiebaTokenizer input (parameter mp_path is invalid path)
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestJiebaTokenizerAddWord) {
|
|
|
// Testing the parameter AddWord of JiebaTokenizer when the freq is not provided (default 0).
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestJiebaTokenizerAddWord.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testJiebaDataset/4.txt";
|
|
|
std::string hmm_path = datasets_root_path_ + "/jiebadict/hmm_model.utf8";
|
|
|
std::string mp_path = datasets_root_path_ + "/jiebadict/jieba.dict.utf8";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create jieba_tokenizer operation on ds
|
|
|
std::shared_ptr<text::JiebaTokenizer> jieba_tokenizer =
|
|
|
std::make_shared<text::JiebaTokenizer>(hmm_path, mp_path, JiebaMode::kMp);
|
|
|
EXPECT_NE(jieba_tokenizer, nullptr);
|
|
|
|
|
|
// Add word with freq not provided (default 0)
|
|
|
jieba_tokenizer->AddWord("男默女泪");
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({jieba_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"男默女泪", "市", "长江大桥"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected, &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestJiebaTokenizerAddWord1) {
|
|
|
// Testing the parameter AddWord of JiebaTokenizer when the freq is set explicitly to 0.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestJiebaTokenizerAddWord1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testJiebaDataset/4.txt";
|
|
|
std::string hmm_path = datasets_root_path_ + "/jiebadict/hmm_model.utf8";
|
|
|
std::string mp_path = datasets_root_path_ + "/jiebadict/jieba.dict.utf8";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create jieba_tokenizer operation on ds
|
|
|
std::shared_ptr<text::JiebaTokenizer> jieba_tokenizer =
|
|
|
std::make_shared<text::JiebaTokenizer>(hmm_path, mp_path, JiebaMode::kMp);
|
|
|
EXPECT_NE(jieba_tokenizer, nullptr);
|
|
|
|
|
|
// Add word with freq is set explicitly to 0
|
|
|
jieba_tokenizer->AddWord("男默女泪", 0);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({jieba_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"男默女泪", "市", "长江大桥"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected, &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestJiebaTokenizerAddWord2) {
|
|
|
// Testing the parameter AddWord of JiebaTokenizer when the freq is 10.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestJiebaTokenizerAddWord2.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testJiebaDataset/4.txt";
|
|
|
std::string hmm_path = datasets_root_path_ + "/jiebadict/hmm_model.utf8";
|
|
|
std::string mp_path = datasets_root_path_ + "/jiebadict/jieba.dict.utf8";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create jieba_tokenizer operation on ds
|
|
|
std::shared_ptr<text::JiebaTokenizer> jieba_tokenizer =
|
|
|
std::make_shared<text::JiebaTokenizer>(hmm_path, mp_path, JiebaMode::kMp);
|
|
|
EXPECT_NE(jieba_tokenizer, nullptr);
|
|
|
|
|
|
// Add word with freq 10
|
|
|
jieba_tokenizer->AddWord("男默女泪", 10);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({jieba_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"男默女泪", "市", "长江大桥"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected, &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestJiebaTokenizerAddWord3) {
|
|
|
// Testing the parameter AddWord of JiebaTokenizer when the freq is 20000 which affects the result of segmentation.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestJiebaTokenizerAddWord3.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testJiebaDataset/6.txt";
|
|
|
std::string hmm_path = datasets_root_path_ + "/jiebadict/hmm_model.utf8";
|
|
|
std::string mp_path = datasets_root_path_ + "/jiebadict/jieba.dict.utf8";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create jieba_tokenizer operation on ds
|
|
|
std::shared_ptr<text::JiebaTokenizer> jieba_tokenizer =
|
|
|
std::make_shared<text::JiebaTokenizer>(hmm_path, mp_path, JiebaMode::kMp);
|
|
|
EXPECT_NE(jieba_tokenizer, nullptr);
|
|
|
|
|
|
// Add word with freq 20000
|
|
|
jieba_tokenizer->AddWord("江大桥", 20000);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({jieba_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"江州", "市长", "江大桥", "参加", "了", "长江大桥", "的", "通车", "仪式"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateFromVector(expected, &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 1);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestJiebaTokenizerAddWordFail) {
|
|
|
// Testing the incorrect parameter of AddWord in JiebaTokenizer.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestJiebaTokenizerAddWordFail.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testJiebaDataset/3.txt";
|
|
|
std::string hmm_path = datasets_root_path_ + "/jiebadict/hmm_model.utf8";
|
|
|
std::string mp_path = datasets_root_path_ + "/jiebadict/jieba.dict.utf8";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Testing the parameter word of AddWord is empty
|
|
|
std::shared_ptr<text::JiebaTokenizer> jieba_tokenizer =
|
|
|
std::make_shared<text::JiebaTokenizer>(hmm_path, mp_path, JiebaMode::kMp);
|
|
|
EXPECT_NE(jieba_tokenizer, nullptr);
|
|
|
EXPECT_NE(jieba_tokenizer->AddWord("", 10), Status::OK());
|
|
|
// Testing the parameter freq of AddWord is negative
|
|
|
std::shared_ptr<text::JiebaTokenizer> jieba_tokenizer1 =
|
|
|
std::make_shared<text::JiebaTokenizer>(hmm_path, mp_path, JiebaMode::kMp);
|
|
|
EXPECT_NE(jieba_tokenizer1, nullptr);
|
|
|
EXPECT_NE(jieba_tokenizer1->AddWord("我们", -1), Status::OK());
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestSlidingWindowSuccess) {
|
|
|
// Testing the parameter of SlidingWindow interface when the axis is 0.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSlidingWindowSuccess.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTextFileDataset/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create white_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> white_tokenizer = std::make_shared<text::WhitespaceTokenizer>();
|
|
|
EXPECT_NE(white_tokenizer, nullptr);
|
|
|
// Create sliding_window operation on ds
|
|
|
std::shared_ptr<TensorTransform> sliding_window = std::make_shared<text::SlidingWindow>(3, 0);
|
|
|
EXPECT_NE(sliding_window, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({white_tokenizer, sliding_window}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {{"This", "is", "a", "is", "a", "text", "a", "text", "file."},
|
|
|
// {"Be", "happy", "every", "happy", "every", "day."},
|
|
|
// {"Good", "luck", "to", "luck", "to", "everyone."}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// int x = expected[i].size() / 3;
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x, 3}), &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 3);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestSlidingWindowSuccess1) {
|
|
|
// Testing the parameter of SlidingWindow interface when the axis is -1.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSlidingWindowSuccess1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTextFileDataset/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create white_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> white_tokenizer = std::make_shared<text::WhitespaceTokenizer>();
|
|
|
EXPECT_NE(white_tokenizer, nullptr);
|
|
|
// Create sliding_window operation on ds
|
|
|
std::shared_ptr<TensorTransform> sliding_window = std::make_shared<text::SlidingWindow>(2, -1);
|
|
|
EXPECT_NE(sliding_window, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({white_tokenizer, sliding_window}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {{"This", "is", "is", "a", "a", "text", "text", "file."},
|
|
|
// {"Be", "happy", "happy", "every", "every", "day."},
|
|
|
// {"Good", "luck", "luck", "to", "to", "everyone."}};
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// int x = expected[i].size() / 2;
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x, 2}), &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 3);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestSlidingWindowFail1) {
|
|
|
// Testing the incorrect parameter of SlidingWindow interface.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSlidingWindowFail1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTextFileDataset/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create sliding_window operation on ds
|
|
|
// Testing the parameter width less than or equal to 0
|
|
|
// The parameter axis support 0 or -1 only for now
|
|
|
std::shared_ptr<TensorTransform> sliding_window = std::make_shared<text::SlidingWindow>(0, 0);
|
|
|
EXPECT_NE(sliding_window, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({sliding_window});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid SlidingWindow input (width less than or equal to 0)
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestSlidingWindowFail2) {
|
|
|
// Testing the incorrect parameter of SlidingWindow interface.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSlidingWindowFail2.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTextFileDataset/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create sliding_window operation on ds
|
|
|
// Testing the parameter width less than or equal to 0
|
|
|
// The parameter axis support 0 or -1 only for now
|
|
|
std::shared_ptr<TensorTransform> sliding_window = std::make_shared<text::SlidingWindow>(-2, 0);
|
|
|
EXPECT_NE(sliding_window, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({sliding_window});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid SlidingWindow input (width less than or equal to 0)
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestToNumberSuccess1) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestToNumberSuccess1.";
|
|
|
// Test ToNumber with integer numbers
|
|
|
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/to_number.txt";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a Take operation on ds
|
|
|
ds = ds->Take(8);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create ToNumber operation on ds
|
|
|
std::shared_ptr<TensorTransform> to_number = std::make_shared<text::ToNumber>("int64");
|
|
|
EXPECT_NE(to_number, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({to_number}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<int64_t> expected = {-121, 14, -2219, 7623, -8162536, 162371864, -1726483716, 98921728421};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateScalar(expected[i], &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 8);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestToNumberSuccess2) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestToNumberSuccess2.";
|
|
|
// Test ToNumber with float numbers
|
|
|
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/to_number.txt";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a Skip operation on ds
|
|
|
ds = ds->Skip(8);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a Take operation on ds
|
|
|
ds = ds->Take(6);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create ToNumber operation on ds
|
|
|
std::shared_ptr<TensorTransform> to_number = std::make_shared<text::ToNumber>("float64");
|
|
|
EXPECT_NE(to_number, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({to_number}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<double_t> expected = {-1.1, 1.4, -2219.321, 7623.453, -816256.234282, 162371864.243243};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateScalar(expected[i], &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 6);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestToNumberFail1) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestToNumberFail1.";
|
|
|
// Test ToNumber with overflow integer numbers
|
|
|
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/to_number.txt";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a Skip operation on ds
|
|
|
ds = ds->Skip(2);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a Take operation on ds
|
|
|
ds = ds->Take(6);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create ToNumber operation on ds
|
|
|
std::shared_ptr<TensorTransform> to_number = std::make_shared<text::ToNumber>("int8");
|
|
|
EXPECT_NE(to_number, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({to_number}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
|
|
|
// Expect error: input out of bounds of int8
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
// Expect failure: GetNextRow fail and return nothing
|
|
|
EXPECT_EQ(i, 0);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestToNumberFail2) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestToNumberFail2.";
|
|
|
// Test ToNumber with overflow float numbers
|
|
|
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/to_number.txt";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a Skip operation on ds
|
|
|
ds = ds->Skip(12);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a Take operation on ds
|
|
|
ds = ds->Take(2);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create ToNumber operation on ds
|
|
|
std::shared_ptr<TensorTransform> to_number = std::make_shared<text::ToNumber>("float16");
|
|
|
EXPECT_NE(to_number, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({to_number}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
|
|
|
// Expect error: input out of bounds of float16
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
// Expect failure: GetNextRow fail and return nothing
|
|
|
EXPECT_EQ(i, 0);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestToNumberFail3) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestToNumberFail3.";
|
|
|
// Test ToNumber with non numerical input
|
|
|
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/to_number.txt";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a Skip operation on ds
|
|
|
ds = ds->Skip(14);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create ToNumber operation on ds
|
|
|
std::shared_ptr<TensorTransform> to_number = std::make_shared<text::ToNumber>("int64");
|
|
|
EXPECT_NE(to_number, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({to_number}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
|
|
|
// Expect error: invalid input which is non numerical
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
// Expect failure: GetNextRow fail and return nothing
|
|
|
EXPECT_EQ(i, 0);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestToNumberFail4) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestToNumberFail4.";
|
|
|
// Test ToNumber with non numerical data type
|
|
|
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/to_number.txt";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create ToNumber operation on ds
|
|
|
std::shared_ptr<TensorTransform> to_number = std::make_shared<text::ToNumber>("string");
|
|
|
EXPECT_NE(to_number, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({to_number}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid parameter with non numerical data type
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestToNumberFail5) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestToNumberFail5.";
|
|
|
// Test ToNumber with non numerical data type
|
|
|
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/to_number.txt";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create ToNumber operation on ds
|
|
|
std::shared_ptr<TensorTransform> to_number = std::make_shared<text::ToNumber>("bool");
|
|
|
EXPECT_NE(to_number, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({to_number}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid parameter with non numerical data type
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestTruncateSequencePairSuccess1) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTruncateSequencePairSuccess1.";
|
|
|
// Testing basic TruncateSequencePair
|
|
|
|
|
|
// Set seed for RandomDataset
|
|
|
auto original_seed = config::get_seed();
|
|
|
bool status_set_seed = config::set_seed(0);
|
|
|
EXPECT_EQ(status_set_seed, true);
|
|
|
|
|
|
// Set num_parallel_workers for RandomDataset
|
|
|
auto original_worker = config::get_num_parallel_workers();
|
|
|
bool status_set_worker = config::set_num_parallel_workers(1);
|
|
|
EXPECT_EQ(status_set_worker, true);
|
|
|
|
|
|
// Create a RandomDataset which has column names "col1" and "col2"
|
|
|
std::shared_ptr<SchemaObj> schema = Schema();
|
|
|
schema->add_column("col1", mindspore::TypeId::kNumberTypeInt16, {5});
|
|
|
schema->add_column("col2", mindspore::TypeId::kNumberTypeInt32, {3});
|
|
|
std::shared_ptr<Dataset> ds = RandomData(3, schema);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a truncate_sequence_pair operation on ds
|
|
|
std::shared_ptr<TensorTransform> truncate_sequence_pair = std::make_shared<text::TruncateSequencePair>(4);
|
|
|
EXPECT_NE(truncate_sequence_pair, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({truncate_sequence_pair}, {"col1", "col2"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<int16_t>> expected1 = {{-29556, -29556}, {-18505, -18505}, {-25958, -25958}};
|
|
|
// std::vector<std::vector<int32_t>> expected2 = {
|
|
|
// {-1751672937, -1751672937}, {-656877352, -656877352}, {-606348325, -606348325}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind1 = row["col1"];
|
|
|
// auto ind2 = row["col2"];
|
|
|
// mindspore::MSTensor expected_tensor1;
|
|
|
// mindspore::MSTensor expected_tensor2;
|
|
|
// Tensor::CreateFromVector(expected1[i], &expected_tensor1);
|
|
|
// Tensor::CreateFromVector(expected2[i], &expected_tensor2);
|
|
|
// EXPECT_EQ(*ind1, *expected_tensor1);
|
|
|
// EXPECT_EQ(*ind2, *expected_tensor2);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 3);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
|
|
|
// Restore original seed and num_parallel_workers
|
|
|
status_set_seed = config::set_seed(original_seed);
|
|
|
EXPECT_EQ(status_set_seed, true);
|
|
|
status_set_worker = config::set_num_parallel_workers(original_worker);
|
|
|
EXPECT_EQ(status_set_worker, true);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestTruncateSequencePairSuccess2) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTruncateSequencePairSuccess2.";
|
|
|
// Testing basic TruncateSequencePair with odd max_length
|
|
|
|
|
|
// Set seed for RandomDataset
|
|
|
auto original_seed = config::get_seed();
|
|
|
bool status_set_seed = config::set_seed(1);
|
|
|
EXPECT_EQ(status_set_seed, true);
|
|
|
|
|
|
// Set num_parallel_workers for RandomDataset
|
|
|
auto original_worker = config::get_num_parallel_workers();
|
|
|
bool status_set_worker = config::set_num_parallel_workers(1);
|
|
|
EXPECT_EQ(status_set_worker, true);
|
|
|
|
|
|
// Create a RandomDataset which has column names "col1" and "col2"
|
|
|
std::shared_ptr<SchemaObj> schema = Schema();
|
|
|
schema->add_column("col1", mindspore::TypeId::kNumberTypeInt32, {4});
|
|
|
schema->add_column("col2", mindspore::TypeId::kNumberTypeInt64, {4});
|
|
|
std::shared_ptr<Dataset> ds = RandomData(4, schema);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a truncate_sequence_pair operation on ds
|
|
|
std::shared_ptr<TensorTransform> truncate_sequence_pair = std::make_shared<text::TruncateSequencePair>(5);
|
|
|
EXPECT_NE(truncate_sequence_pair, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({truncate_sequence_pair}, {"col1", "col2"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<int32_t>> expected1 = {{1785358954, 1785358954, 1785358954},
|
|
|
// {-1195853640, -1195853640, -1195853640},
|
|
|
// {0, 0, 0},
|
|
|
// {1296911693, 1296911693, 1296911693}};
|
|
|
// std::vector<std::vector<int64_t>> expected2 = {
|
|
|
// {-1, -1}, {-1229782938247303442, -1229782938247303442}, {2314885530818453536, 2314885530818453536}, {-1, -1}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind1 = row["col1"];
|
|
|
// auto ind2 = row["col2"];
|
|
|
// mindspore::MSTensor expected_tensor1;
|
|
|
// mindspore::MSTensor expected_tensor2;
|
|
|
// Tensor::CreateFromVector(expected1[i], &expected_tensor1);
|
|
|
// Tensor::CreateFromVector(expected2[i], &expected_tensor2);
|
|
|
// EXPECT_EQ(*ind1, *expected_tensor1);
|
|
|
// EXPECT_EQ(*ind2, *expected_tensor2);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 4);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
|
|
|
// Restore original seed and num_parallel_workers
|
|
|
status_set_seed = config::set_seed(original_seed);
|
|
|
EXPECT_EQ(status_set_seed, true);
|
|
|
status_set_worker = config::set_num_parallel_workers(original_worker);
|
|
|
EXPECT_EQ(status_set_worker, true);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestTruncateSequencePairFail) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTruncateSequencePairFail.";
|
|
|
// Testing TruncateSequencePair with negative max_length
|
|
|
|
|
|
// Create a RandomDataset which has column names "col1" and "col2"
|
|
|
std::shared_ptr<SchemaObj> schema = Schema();
|
|
|
schema->add_column("col1", mindspore::TypeId::kNumberTypeInt8, {3});
|
|
|
schema->add_column("col2", mindspore::TypeId::kNumberTypeInt8, {3});
|
|
|
std::shared_ptr<Dataset> ds = RandomData(3, schema);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create a truncate_sequence_pair operation on ds
|
|
|
std::shared_ptr<TensorTransform> truncate_sequence_pair = std::make_shared<text::TruncateSequencePair>(-1);
|
|
|
EXPECT_NE(truncate_sequence_pair, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({truncate_sequence_pair});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid TruncateSequencePair input (invalid parameter with negative max_length)
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestNgramSuccess) {
|
|
|
// Testing the parameter of Ngram interface.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNgramSuccess.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTextFileDataset/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create white_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> white_tokenizer = std::make_shared<text::WhitespaceTokenizer>();
|
|
|
EXPECT_NE(white_tokenizer, nullptr);
|
|
|
// Create sliding_window operation on ds
|
|
|
std::shared_ptr<TensorTransform> ngram_op(new text::Ngram({2}, {"_", 1}, {"_", 1}, " "));
|
|
|
EXPECT_NE(ngram_op, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({white_tokenizer, ngram_op}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {{"_ This", "This is", "is a", "a text", "text file.", "file. _"},
|
|
|
// {"_ Be", "Be happy", "happy every", "every day.", "day. _"},
|
|
|
// {"_ Good", "Good luck", "luck to", "to everyone.", "everyone.
|
|
|
// _"}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// int x = expected[i].size();
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x}), &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 3);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestNgramSuccess1) {
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNgramSuccess1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTextFileDataset/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create white_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> white_tokenizer = std::make_shared<text::WhitespaceTokenizer>();
|
|
|
EXPECT_NE(white_tokenizer, nullptr);
|
|
|
// Create sliding_window operation on ds
|
|
|
std::shared_ptr<TensorTransform> ngram_op(new text::Ngram({2, 3}, {"&", 2}, {"&", 2}, "-"));
|
|
|
EXPECT_NE(ngram_op, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({white_tokenizer, ngram_op}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {
|
|
|
// {"&-This", "This-is", "is-a", "a-text", "text-file.", "file.-&", "&-&-This", "&-This-is", "This-is-a",
|
|
|
// "is-a-text",
|
|
|
// "a-text-file.", "text-file.-&", "file.-&-&"},
|
|
|
// {"&-Be", "Be-happy", "happy-every", "every-day.", "day.-&", "&-&-Be", "&-Be-happy", "Be-happy-every",
|
|
|
// "happy-every-day.", "every-day.-&", "day.-&-&"},
|
|
|
// {"&-Good", "Good-luck", "luck-to", "to-everyone.", "everyone.-&", "&-&-Good", "&-Good-luck", "Good-luck-to",
|
|
|
// "luck-to-everyone.", "to-everyone.-&", "everyone.-&-&"}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// int x = expected[i].size();
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x}), &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 3);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestNgramFail1) {
|
|
|
// Testing the incorrect parameter of Ngram interface.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNgramFail1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTextFileDataset/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create sliding_window operation on ds
|
|
|
// Testing the vector of ngram is empty
|
|
|
std::shared_ptr<TensorTransform> ngram_op(new text::Ngram({}));
|
|
|
EXPECT_NE(ngram_op, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({ngram_op});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid Ngram input (the vector of ngram is empty)
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestNgramFail2) {
|
|
|
// Testing the incorrect parameter of Ngram interface.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNgramFail2.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTextFileDataset/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create sliding_window operation on ds
|
|
|
// Testing the value of ngrams vector less than and equal to 0
|
|
|
std::shared_ptr<TensorTransform> ngram_op(new text::Ngram({0}));
|
|
|
EXPECT_NE(ngram_op, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({ngram_op});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid Ngram input (the value of ngrams vector less than and equal to 0)
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestNgramFail3) {
|
|
|
// Testing the incorrect parameter of Ngram interface.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNgramFail3.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTextFileDataset/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create sliding_window operation on ds
|
|
|
// Testing the value of ngrams vector less than and equal to 0
|
|
|
std::shared_ptr<TensorTransform> ngram_op(new text::Ngram({-2}));
|
|
|
EXPECT_NE(ngram_op, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({ngram_op});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid Ngram input (the value of ngrams vector less than and equal to 0)
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestNgramFail4) {
|
|
|
// Testing the incorrect parameter of Ngram interface.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNgramFail4.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTextFileDataset/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create sliding_window operation on ds
|
|
|
// Testing the second parameter pad_width in left_pad vector less than 0
|
|
|
std::shared_ptr<TensorTransform> ngram_op(new text::Ngram({2}, {"", -1}));
|
|
|
EXPECT_NE(ngram_op, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({ngram_op});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid Ngram input (the second parameter pad_width in left_pad vector less than 0)
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestNgramFail5) {
|
|
|
// Testing the incorrect parameter of Ngram interface.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNgramFail5.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTextFileDataset/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create sliding_window operation on ds
|
|
|
// Testing the second parameter pad_width in right_pad vector less than 0
|
|
|
std::shared_ptr<TensorTransform> ngram_op(new text::Ngram({2}, {"", 1}, {"", -1}));
|
|
|
EXPECT_NE(ngram_op, nullptr);
|
|
|
|
|
|
// Create a Map operation on ds
|
|
|
ds = ds->Map({ngram_op});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
// Expect failure: invalid Ngram input (the second parameter pad_width in left_pad vector less than 0)
|
|
|
EXPECT_EQ(iter, nullptr);
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestNormalizeUTF8Success) {
|
|
|
// Testing the parameter of NormalizeUTF8 interface when the normalize_form is NormalizeForm::kNfkc.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizeUTF8Success.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/normalize.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create normalizeutf8 operation on ds
|
|
|
std::shared_ptr<TensorTransform> normalizeutf8 = std::make_shared<text::NormalizeUTF8>(NormalizeForm::kNfkc);
|
|
|
EXPECT_NE(normalizeutf8, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({normalizeutf8}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"ṩ", "ḍ̇", "q̣̇", "fi", "25", "ṩ"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateScalar(expected[i], &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 6);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestNormalizeUTF8Success1) {
|
|
|
// Testing the parameter of NormalizeUTF8 interface when the normalize_form is NormalizeForm::kNfc.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizeUTF8Success1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/normalize.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create normalizeutf8 operation on ds
|
|
|
std::shared_ptr<TensorTransform> normalizeutf8 = std::make_shared<text::NormalizeUTF8>(NormalizeForm::kNfc);
|
|
|
EXPECT_NE(normalizeutf8, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({normalizeutf8}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"ṩ", "ḍ̇", "q̣̇", "fi", "2⁵", "ẛ̣"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateScalar(expected[i], &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 6);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestNormalizeUTF8Success2) {
|
|
|
// Testing the parameter of NormalizeUTF8 interface when the normalize_form is NormalizeForm::kNfd.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizeUTF8Success2.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/normalize.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create normalizeutf8 operation on ds
|
|
|
std::shared_ptr<TensorTransform> normalizeutf8 = std::make_shared<text::NormalizeUTF8>(NormalizeForm::kNfd);
|
|
|
EXPECT_NE(normalizeutf8, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({normalizeutf8}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"ṩ", "ḍ̇", "q̣̇", "fi", "2⁵", "ẛ̣"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateScalar(expected[i], &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 6);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestNormalizeUTF8Success3) {
|
|
|
// Testing the parameter of NormalizeUTF8 interface when the normalize_form is NormalizeForm::kNfkd.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizeUTF8Success3.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/normalize.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create normalizeutf8 operation on ds
|
|
|
std::shared_ptr<TensorTransform> normalizeutf8 = std::make_shared<text::NormalizeUTF8>(NormalizeForm::kNfkd);
|
|
|
EXPECT_NE(normalizeutf8, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({normalizeutf8}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"ṩ", "ḍ̇", "q̣̇", "fi", "25", "ṩ"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateScalar(expected[i], &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 6);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestRegexReplaceSuccess) {
|
|
|
// Testing the parameter of RegexReplace interface when the replace_all is true.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRegexReplaceSuccess.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/regex_replace.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create regex_replace operation on ds
|
|
|
std::shared_ptr<TensorTransform> regex_replace = std::make_shared<text::RegexReplace>("\\s+", "_", true);
|
|
|
EXPECT_NE(regex_replace, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({regex_replace}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"Hello_World", "Let's_Go", "1:hello", "2:world",
|
|
|
// "31:beijing", "Welcome_to_China!", "_我_不想_长大_", "Welcome_to_Shenzhen!"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateScalar(expected[i], &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 8);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestRegexReplaceSuccess1) {
|
|
|
// Testing the parameter of RegexReplace interface when the replace_all is false.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRegexReplaceSuccess1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/regex_replace.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create regex_replace operation on ds
|
|
|
std::shared_ptr<TensorTransform> regex_replace = std::make_shared<text::RegexReplace>("\\s+", "_", false);
|
|
|
EXPECT_NE(regex_replace, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({regex_replace}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::string> expected = {"Hello_World", "Let's_Go", "1:hello", "2:world",
|
|
|
// "31:beijing", "Welcome_to China!", "_我 不想 长大 ", "Welcome_to
|
|
|
// Shenzhen!"};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// Tensor::CreateScalar(expected[i], &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 8);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestRegexTokenizerSuccess) {
|
|
|
// Testing the parameter of RegexTokenizer interface when the with_offsets is false.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRegexTokenizerSuccess.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/regex_replace.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create regex_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> regex_tokenizer = std::make_shared<text::RegexTokenizer>("\\s+", "\\s+", false);
|
|
|
EXPECT_NE(regex_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({regex_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {{"Hello", " ", "World"},
|
|
|
// {"Let's", " ", "Go"},
|
|
|
// {"1:hello"},
|
|
|
// {"2:world"},
|
|
|
// {"31:beijing"},
|
|
|
// {"Welcome", " ", "to", " ", "China!"},
|
|
|
// {" ", "我", " ", "不想", " ", "长大", " "},
|
|
|
// {"Welcome", " ", "to", " ", "Shenzhen!"}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// int x = expected[i].size();
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x}), &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 8);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestRegexTokenizerSuccess1) {
|
|
|
// Testing the parameter of RegexTokenizer interface when the with_offsets is true.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRegexTokenizerSuccess1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/regex_replace.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create regex_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> regex_tokenizer = std::make_shared<text::RegexTokenizer>("\\s+", "\\s+", true);
|
|
|
EXPECT_NE(regex_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({regex_tokenizer}, {"text"}, {"token", "offsets_start", "offsets_limit"},
|
|
|
{"token", "offsets_start", "offsets_limit"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {{"Hello", " ", "World"},
|
|
|
// {"Let's", " ", "Go"},
|
|
|
// {"1:hello"},
|
|
|
// {"2:world"},
|
|
|
// {"31:beijing"},
|
|
|
// {"Welcome", " ", "to", " ", "China!"},
|
|
|
// {" ", "我", " ", "不想", " ", "长大", " "},
|
|
|
// {"Welcome", " ", "to", " ", "Shenzhen!"}};
|
|
|
|
|
|
// std::vector<std::vector<uint32_t>> expected_offsets_start = {
|
|
|
// {0, 5, 6}, {0, 5, 6}, {0}, {0}, {0}, {0, 7, 8, 10, 11}, {0, 2, 5, 6, 12, 14, 20}, {0, 7, 8, 10, 11}};
|
|
|
// std::vector<std::vector<uint32_t>> expected_offsets_limit = {
|
|
|
// {5, 6, 11}, {5, 6, 8}, {7}, {7}, {10}, {7, 8, 10, 11, 17}, {2, 5, 6, 12, 14, 20, 21}, {7, 8, 10, 11, 20}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["offsets_start"];
|
|
|
// auto ind1 = row["offsets_limit"];
|
|
|
// auto token = row["token"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// mindspore::MSTensor expected_tensor_offsets_start;
|
|
|
// mindspore::MSTensor expected_tensor_offsets_limit;
|
|
|
// int x = expected[i].size();
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x}), &expected_tensor);
|
|
|
// Tensor::CreateFromVector(expected_offsets_start[i], TensorShape({x}), &expected_tensor_offsets_start);
|
|
|
// Tensor::CreateFromVector(expected_offsets_limit[i], TensorShape({x}), &expected_tensor_offsets_limit);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor_offsets_start);
|
|
|
// EXPECT_EQ(*ind1, *expected_tensor_offsets_limit);
|
|
|
// EXPECT_EQ(*token, *expected_tensor);
|
|
|
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 8);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestUnicodeCharTokenizerSuccess) {
|
|
|
// Testing the parameter of UnicodeCharTokenizer interface when the with_offsets is default.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUnicodeCharTokenizerSuccess.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create unicodechar_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> unicodechar_tokenizer = std::make_shared<text::UnicodeCharTokenizer>();
|
|
|
EXPECT_NE(unicodechar_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({unicodechar_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {
|
|
|
// {"W", "e", "l", "c", "o", "m", "e", " ", "t", "o", " ", "B", "e", "i", "j", "i", "n", "g", "!"},
|
|
|
// {"北", "京", "欢", "迎", "您", "!"},
|
|
|
// {"我", "喜", "欢", "E", "n", "g", "l", "i", "s", "h", "!"},
|
|
|
// {" ", " "}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// int x = expected[i].size();
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x}), &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 4);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestUnicodeCharTokenizerSuccess1) {
|
|
|
// Testing the parameter of UnicodeCharTokenizer interface when the with_offsets is true.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUnicodeCharTokenizerSuccess1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create unicodechar_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> unicodechar_tokenizer = std::make_shared<text::UnicodeCharTokenizer>(true);
|
|
|
EXPECT_NE(unicodechar_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({unicodechar_tokenizer}, {"text"}, {"token", "offsets_start", "offsets_limit"},
|
|
|
{"token", "offsets_start", "offsets_limit"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {
|
|
|
// {"W", "e", "l", "c", "o", "m", "e", " ", "t", "o", " ", "B", "e", "i", "j", "i", "n", "g", "!"},
|
|
|
// {"北", "京", "欢", "迎", "您", "!"},
|
|
|
// {"我", "喜", "欢", "E", "n", "g", "l", "i", "s", "h", "!"},
|
|
|
// {" ", " "}};
|
|
|
|
|
|
// std::vector<std::vector<uint32_t>> expected_offsets_start = {
|
|
|
// {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18},
|
|
|
// {0, 3, 6, 9, 12, 15},
|
|
|
// {0, 3, 6, 9, 10, 11, 12, 13, 14, 15, 16},
|
|
|
// {0, 1}};
|
|
|
// std::vector<std::vector<uint32_t>> expected_offsets_limit = {
|
|
|
// {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19},
|
|
|
// {3, 6, 9, 12, 15, 18},
|
|
|
// {3, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17},
|
|
|
// {1, 2}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["offsets_start"];
|
|
|
// auto ind1 = row["offsets_limit"];
|
|
|
// auto token = row["token"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// mindspore::MSTensor expected_tensor_offsets_start;
|
|
|
// mindspore::MSTensor expected_tensor_offsets_limit;
|
|
|
// int x = expected[i].size();
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x}), &expected_tensor);
|
|
|
// Tensor::CreateFromVector(expected_offsets_start[i], TensorShape({x}), &expected_tensor_offsets_start);
|
|
|
// Tensor::CreateFromVector(expected_offsets_limit[i], TensorShape({x}), &expected_tensor_offsets_limit);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor_offsets_start);
|
|
|
// EXPECT_EQ(*ind1, *expected_tensor_offsets_limit);
|
|
|
// EXPECT_EQ(*token, *expected_tensor);
|
|
|
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 4);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestUnicodeScriptTokenizerSuccess) {
|
|
|
// Testing the parameter of UnicodeScriptTokenizer interface when the with_offsets and the keep_whitespace is default.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUnicodeScriptTokenizerSuccess.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create unicodescript_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> unicodescript_tokenizer = std::make_shared<text::UnicodeScriptTokenizer>();
|
|
|
EXPECT_NE(unicodescript_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({unicodescript_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {
|
|
|
// {"Welcome", "to", "Beijing", "!"}, {"北京欢迎您", "!"}, {"我喜欢", "English", "!"}, {""}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// int x = expected[i].size();
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x}), &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 4);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestUnicodeScriptTokenizerSuccess1) {
|
|
|
// Testing the parameter of UnicodeScriptTokenizer interface when the keep_whitespace is true and the with_offsets is
|
|
|
// false.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUnicodeScriptTokenizerSuccess1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create unicodescript_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> unicodescript_tokenizer = std::make_shared<text::UnicodeScriptTokenizer>(true);
|
|
|
EXPECT_NE(unicodescript_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({unicodescript_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {
|
|
|
// {"Welcome", " ", "to", " ", "Beijing", "!"}, {"北京欢迎您", "!"}, {"我喜欢", "English", "!"}, {" "}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// int x = expected[i].size();
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x}), &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 4);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestUnicodeScriptTokenizerSuccess2) {
|
|
|
// Testing the parameter of UnicodeScriptTokenizer interface when the keep_whitespace is false and the with_offsets is
|
|
|
// true.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUnicodeScriptTokenizerSuccess2.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create unicodescript_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> unicodescript_tokenizer =
|
|
|
std::make_shared<text::UnicodeScriptTokenizer>(false, true);
|
|
|
EXPECT_NE(unicodescript_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({unicodescript_tokenizer}, {"text"}, {"token", "offsets_start", "offsets_limit"},
|
|
|
{"token", "offsets_start", "offsets_limit"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {
|
|
|
// {"Welcome", "to", "Beijing", "!"}, {"北京欢迎您", "!"}, {"我喜欢", "English", "!"}, {""}};
|
|
|
|
|
|
// std::vector<std::vector<uint32_t>> expected_offsets_start = {{0, 8, 11, 18}, {0, 15}, {0, 9, 16}, {0}};
|
|
|
// std::vector<std::vector<uint32_t>> expected_offsets_limit = {{7, 10, 18, 19}, {15, 18}, {9, 16, 17}, {0}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["offsets_start"];
|
|
|
// auto ind1 = row["offsets_limit"];
|
|
|
// auto token = row["token"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// mindspore::MSTensor expected_tensor_offsets_start;
|
|
|
// mindspore::MSTensor expected_tensor_offsets_limit;
|
|
|
// int x = expected[i].size();
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x}), &expected_tensor);
|
|
|
// Tensor::CreateFromVector(expected_offsets_start[i], TensorShape({x}), &expected_tensor_offsets_start);
|
|
|
// Tensor::CreateFromVector(expected_offsets_limit[i], TensorShape({x}), &expected_tensor_offsets_limit);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor_offsets_start);
|
|
|
// EXPECT_EQ(*ind1, *expected_tensor_offsets_limit);
|
|
|
// EXPECT_EQ(*token, *expected_tensor);
|
|
|
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 4);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestUnicodeScriptTokenizerSuccess3) {
|
|
|
// Testing the parameter of UnicodeScriptTokenizer interface when the keep_whitespace is true and the with_offsets is
|
|
|
// true.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUnicodeScriptTokenizerSuccess3.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create unicodescript_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> unicodescript_tokenizer = std::make_shared<text::UnicodeScriptTokenizer>(true, true);
|
|
|
EXPECT_NE(unicodescript_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({unicodescript_tokenizer}, {"text"}, {"token", "offsets_start", "offsets_limit"},
|
|
|
{"token", "offsets_start", "offsets_limit"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {
|
|
|
// {"Welcome", " ", "to", " ", "Beijing", "!"}, {"北京欢迎您", "!"}, {"我喜欢", "English", "!"}, {" "}};
|
|
|
|
|
|
// std::vector<std::vector<uint32_t>> expected_offsets_start = {{0, 7, 8, 10, 11, 18}, {0, 15}, {0, 9, 16}, {0}};
|
|
|
// std::vector<std::vector<uint32_t>> expected_offsets_limit = {{7, 8, 10, 11, 18, 19}, {15, 18}, {9, 16, 17}, {2}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["offsets_start"];
|
|
|
// auto ind1 = row["offsets_limit"];
|
|
|
// auto token = row["token"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// mindspore::MSTensor expected_tensor_offsets_start;
|
|
|
// mindspore::MSTensor expected_tensor_offsets_limit;
|
|
|
// int x = expected[i].size();
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x}), &expected_tensor);
|
|
|
// Tensor::CreateFromVector(expected_offsets_start[i], TensorShape({x}), &expected_tensor_offsets_start);
|
|
|
// Tensor::CreateFromVector(expected_offsets_limit[i], TensorShape({x}), &expected_tensor_offsets_limit);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor_offsets_start);
|
|
|
// EXPECT_EQ(*ind1, *expected_tensor_offsets_limit);
|
|
|
// EXPECT_EQ(*token, *expected_tensor);
|
|
|
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 4);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestWhitespaceTokenizerSuccess) {
|
|
|
// Testing the parameter of WhitespaceTokenizer interface when the with_offsets is default.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestWhitespaceTokenizerSuccess.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTextFileDataset/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create white_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> white_tokenizer = std::make_shared<text::WhitespaceTokenizer>();
|
|
|
EXPECT_NE(white_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({white_tokenizer}, {"text"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {
|
|
|
// {"This", "is", "a", "text", "file."}, {"Be", "happy", "every", "day."}, {"Good", "luck", "to", "everyone."}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["text"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// int x = expected[i].size();
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x}), &expected_tensor);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor);
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 3);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|
|
|
|
|
|
TEST_F(MindDataTestPipeline, TestWhitespaceTokenizerSuccess1) {
|
|
|
// Testing the parameter of WhitespaceTokenizer interface when the with_offsets is true.
|
|
|
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestWhitespaceTokenizerSuccess1.";
|
|
|
|
|
|
// Create a TextFile dataset
|
|
|
std::string data_file = datasets_root_path_ + "/testTokenizerData/1.txt";
|
|
|
std::shared_ptr<Dataset> ds = TextFile({data_file}, 0, ShuffleMode::kFalse);
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create white_tokenizer operation on ds
|
|
|
std::shared_ptr<TensorTransform> white_tokenizer = std::make_shared<text::WhitespaceTokenizer>(true);
|
|
|
EXPECT_NE(white_tokenizer, nullptr);
|
|
|
|
|
|
// Create Map operation on ds
|
|
|
ds = ds->Map({white_tokenizer}, {"text"}, {"token", "offsets_start", "offsets_limit"},
|
|
|
{"token", "offsets_start", "offsets_limit"});
|
|
|
EXPECT_NE(ds, nullptr);
|
|
|
|
|
|
// Create an iterator over the result of the above dataset
|
|
|
// This will trigger the creation of the Execution Tree and launch it.
|
|
|
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
|
|
EXPECT_NE(iter, nullptr);
|
|
|
|
|
|
// Iterate the dataset and get each row
|
|
|
std::unordered_map<std::string, mindspore::MSTensor> row;
|
|
|
iter->GetNextRow(&row);
|
|
|
|
|
|
// std::vector<std::vector<std::string>> expected = {
|
|
|
// {"Welcome", "to", "Beijing!"}, {"北京欢迎您!"}, {"我喜欢English!"}, {""}};
|
|
|
|
|
|
// std::vector<std::vector<uint32_t>> expected_offsets_start = {{0, 8, 11}, {0}, {0}, {0}};
|
|
|
// std::vector<std::vector<uint32_t>> expected_offsets_limit = {{7, 10, 19}, {18}, {17}, {0}};
|
|
|
|
|
|
uint64_t i = 0;
|
|
|
while (row.size() != 0) {
|
|
|
// auto ind = row["offsets_start"];
|
|
|
// auto ind1 = row["offsets_limit"];
|
|
|
// auto token = row["token"];
|
|
|
// mindspore::MSTensor expected_tensor;
|
|
|
// mindspore::MSTensor expected_tensor_offsets_start;
|
|
|
// mindspore::MSTensor expected_tensor_offsets_limit;
|
|
|
// int x = expected[i].size();
|
|
|
// Tensor::CreateFromVector(expected[i], TensorShape({x}), &expected_tensor);
|
|
|
// Tensor::CreateFromVector(expected_offsets_start[i], TensorShape({x}), &expected_tensor_offsets_start);
|
|
|
// Tensor::CreateFromVector(expected_offsets_limit[i], TensorShape({x}), &expected_tensor_offsets_limit);
|
|
|
// EXPECT_EQ(*ind, *expected_tensor_offsets_start);
|
|
|
// EXPECT_EQ(*ind1, *expected_tensor_offsets_limit);
|
|
|
// EXPECT_EQ(*token, *expected_tensor);
|
|
|
|
|
|
iter->GetNextRow(&row);
|
|
|
i++;
|
|
|
}
|
|
|
|
|
|
EXPECT_EQ(i, 4);
|
|
|
|
|
|
// Manually terminate the pipeline
|
|
|
iter->Stop();
|
|
|
}
|