You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
78 lines
2.6 KiB
78 lines
2.6 KiB
/**
|
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include <vector>
|
|
#include <memory>
|
|
#include "common/common_test.h"
|
|
#include "ops/crop.h"
|
|
#include "ir/dtype/type.h"
|
|
#include "ir/value.h"
|
|
#include "abstract/dshape.h"
|
|
#include "utils/tensor_construct_utils.h"
|
|
|
|
namespace mindspore {
|
|
namespace ops {
|
|
class TestCrop : public UT::Common {
|
|
public:
|
|
TestCrop() {}
|
|
void SetUp() {}
|
|
void TearDown() {}
|
|
};
|
|
|
|
TEST_F(TestCrop, test_ops_crop1) {
|
|
auto crop = std::make_shared<Crop>();
|
|
crop->Init(1, std::vector<int64_t>{1, 1, 1, 1});
|
|
std::vector<int64_t> ret = crop->get_offsets();
|
|
EXPECT_EQ(crop->get_axis(), 1);
|
|
for (auto item : ret) {
|
|
EXPECT_EQ(item, 1);
|
|
}
|
|
auto tensor_x1 = std::make_shared<tensor::Tensor>(kNumberTypeFloat32, std::vector<int64_t>{2, 2});
|
|
auto tensor_x2 = std::make_shared<tensor::Tensor>(kNumberTypeInt32, std::vector<int64_t>{1});
|
|
MS_EXCEPTION_IF_NULL(tensor_x1);
|
|
MS_EXCEPTION_IF_NULL(tensor_x2);
|
|
auto tensor_x1_data = reinterpret_cast<float *>(tensor_x1->data_c());
|
|
*tensor_x1_data = 1.0;
|
|
tensor_x1_data++;
|
|
*tensor_x1_data = 2.0;
|
|
tensor_x1_data++;
|
|
*tensor_x1_data = 3.0;
|
|
tensor_x1_data++;
|
|
*tensor_x1_data = 4.0;
|
|
tensor_x1_data++;
|
|
auto tensor_x2_data = reinterpret_cast<int *>(tensor_x2->data_c());
|
|
*tensor_x2_data = 1;
|
|
auto abstract = crop->Infer({tensor_x1->ToAbstract(), tensor_x2->ToAbstract()});
|
|
MS_EXCEPTION_IF_NULL(abstract);
|
|
EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
|
|
auto shape_ptr = abstract->BuildShape();
|
|
MS_EXCEPTION_IF_NULL(shape_ptr);
|
|
EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
|
|
auto shape = shape_ptr->cast<abstract::ShapePtr>();
|
|
MS_EXCEPTION_IF_NULL(shape);
|
|
auto shape_vec = shape->shape();
|
|
auto type = abstract->BuildType();
|
|
MS_EXCEPTION_IF_NULL(type);
|
|
EXPECT_EQ(type->isa<TensorType>(), true);
|
|
auto tensor_type = type->cast<TensorTypePtr>();
|
|
MS_EXCEPTION_IF_NULL(tensor_type);
|
|
auto data_type = tensor_type->element();
|
|
MS_EXCEPTION_IF_NULL(data_type);
|
|
EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
|
|
EXPECT_EQ(shape_vec.size(), 1);
|
|
EXPECT_EQ(shape_vec[0], 1);
|
|
}
|
|
} // namespace ops
|
|
} // namespace mindspore
|