You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
513 lines
22 KiB
513 lines
22 KiB
/**
|
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "backend/session/gpu_session.h"
|
|
|
|
#include "backend/optimizer/common/helper.h"
|
|
#include "backend/optimizer/common/optimizer.h"
|
|
#include "backend/optimizer/common/pass_manager.h"
|
|
#include "backend/optimizer/gpu/adam_weight_decay_fusion.h"
|
|
#include "backend/optimizer/gpu/adam_fusion.h"
|
|
#include "backend/optimizer/gpu/apply_momentum_weight_scale_fusion.h"
|
|
#include "backend/optimizer/gpu/apply_momentum_scale_fusion.h"
|
|
#include "backend/optimizer/gpu/apply_momentum_weight_fusion.h"
|
|
#include "backend/optimizer/gpu/batch_norm_relu_fusion.h"
|
|
#include "backend/optimizer/gpu/batch_norm_relu_grad_fusion.h"
|
|
#include "backend/optimizer/gpu/batch_norm_add_relu_fusion.h"
|
|
#include "backend/optimizer/gpu/batch_norm_add_relu_grad_fusion.h"
|
|
#include "backend/optimizer/gpu/combine_momentum_fusion.h"
|
|
#include "backend/optimizer/gpu/combine_cast_fusion.h"
|
|
#include "backend/optimizer/gpu/cudnn_inplace_fusion.h"
|
|
#include "backend/optimizer/gpu/insert_format_transform_op.h"
|
|
#include "backend/optimizer/gpu/replace_momentum_cast_fusion.h"
|
|
#include "backend/optimizer/gpu/replace_addn_fusion.h"
|
|
#include "backend/optimizer/gpu/remove_format_transform_pair.h"
|
|
#include "backend/optimizer/gpu/remove_redundant_format_transform.h"
|
|
#include "backend/optimizer/gpu/reduce_precision_fusion.h"
|
|
#include "backend/optimizer/gpu/relu_v2_pass.h"
|
|
#include "backend/optimizer/gpu/add_relu_v2_fusion.h"
|
|
#include "backend/optimizer/gpu/add_relu_grad_v2_fusion.h"
|
|
#include "backend/optimizer/graph_kernel/add_atomic_clean_gpu.h"
|
|
#include "backend/optimizer/graph_kernel/arithmetic_simplify.h"
|
|
#include "backend/optimizer/graph_kernel/basic_ops_fusion.h"
|
|
#include "backend/optimizer/graph_kernel/clean_all_in_once.h"
|
|
#include "backend/optimizer/graph_kernel/eliminate_redundant_output.h"
|
|
#include "backend/optimizer/graph_kernel/tensor_promotion.h"
|
|
#include "backend/optimizer/graph_kernel/graph_kernel_splitter.h"
|
|
#include "backend/optimizer/graph_kernel/graph_kernel_expander.h"
|
|
#include "backend/optimizer/graph_kernel/graph_kernel_cse.h"
|
|
#include "backend/optimizer/graph_kernel/shape_ops_splitter.h"
|
|
#include "backend/optimizer/graph_kernel/value_graph_binder.h"
|
|
#include "backend/optimizer/pass/communication_op_fusion.h"
|
|
#include "backend/optimizer/pass/getitem_tuple.h"
|
|
#include "common/trans.h"
|
|
#include "debug/data_dump/e2e_dump_util.h"
|
|
#include "debug/tensor_load.h"
|
|
#include "debug/dump_proto.h"
|
|
#include "runtime/device/gpu/gpu_kernel_build.h"
|
|
#include "runtime/device/gpu/gpu_kernel_runtime.h"
|
|
#include "runtime/device/gpu/gpu_stream_assign.h"
|
|
#include "runtime/device/gpu/kernel_info_setter.h"
|
|
#include "runtime/device/kernel_runtime_manager.h"
|
|
#include "runtime/device/gpu/cuda_driver.h"
|
|
#include "runtime/device/gpu/distribution/collective_init.h"
|
|
#include "utils/ms_utils.h"
|
|
#include "utils/config_manager.h"
|
|
#include "utils/ms_context.h"
|
|
#if ENABLE_CPU && ENABLE_GPU
|
|
#include "ps/util.h"
|
|
#include "ps/ps_cache/ps_cache_manager.h"
|
|
#endif
|
|
|
|
namespace mindspore {
|
|
namespace session {
|
|
namespace gpu {
|
|
using AnfAlgo = mindspore::session::AnfRuntimeAlgorithm;
|
|
using CollectiveInitializer = device::gpu::CollectiveInitializer;
|
|
using GetLocalRankId = device::gpu::GetLocalRankId;
|
|
|
|
void GPUSession::Init(uint32_t device_id) {
|
|
const void *collective_handle_ = CollectiveInitializer::instance().collective_handle();
|
|
bool collective_inited = CollectiveInitializer::instance().collective_inited();
|
|
if (collective_inited && collective_handle_ != nullptr) {
|
|
auto get_local_rank_funcptr =
|
|
reinterpret_cast<GetLocalRankId>(dlsym(const_cast<void *>(collective_handle_), "local_rank_id"));
|
|
MS_EXCEPTION_IF_NULL(get_local_rank_funcptr);
|
|
device_id = IntToUint((*get_local_rank_funcptr)());
|
|
}
|
|
bool ret = device::gpu::CudaDriver::set_current_device(UintToInt(device_id));
|
|
if (!ret) {
|
|
MS_LOG(EXCEPTION) << "GPUSession failed to set current device id.";
|
|
}
|
|
auto ms_context = MsContext::GetInstance();
|
|
MS_EXCEPTION_IF_NULL(ms_context);
|
|
ms_context->set_param<uint32_t>(MS_CTX_DEVICE_ID, device_id);
|
|
|
|
MS_LOG(INFO) << "Set device id " << device_id << " for gpu session.";
|
|
InitExecutor(kGPUDevice, device_id);
|
|
}
|
|
|
|
void GPUSession::SelectKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
|
MS_EXCEPTION_IF_NULL(kernel_graph);
|
|
device::gpu::FormatTransformChecker::GetInstance().CheckSupportFormatTransform(kernel_graph);
|
|
for (const auto &kernel_node : kernel_graph->execution_order()) {
|
|
MS_EXCEPTION_IF_NULL(kernel_node);
|
|
device::gpu::SetKernelInfo(kernel_node);
|
|
}
|
|
}
|
|
|
|
void GPUSession::StartKernelRT() const {
|
|
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
|
MS_EXCEPTION_IF_NULL(runtime_instance);
|
|
if (!runtime_instance->Init()) {
|
|
MS_LOG(EXCEPTION) << "GPU start kernel runtime failed";
|
|
}
|
|
}
|
|
|
|
void GPUSession::Optimize(const std::shared_ptr<KernelGraph> &kernel_graph) {
|
|
MS_EXCEPTION_IF_NULL(kernel_graph);
|
|
auto context_ptr = MsContext::GetInstance();
|
|
MS_EXCEPTION_IF_NULL(context_ptr);
|
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
|
auto pm = std::make_shared<opt::PassManager>();
|
|
pm->AddPass(std::make_shared<opt::AdamWeightDecayFusion>());
|
|
pm->AddPass(std::make_shared<opt::AdamFusion>());
|
|
pm->AddPass(std::make_shared<opt::ApplyMomentumWeightDecayScaleFusion>());
|
|
pm->AddPass(std::make_shared<opt::ApplyMomentumScaleFusion>());
|
|
pm->AddPass(std::make_shared<opt::ApplyMomentumWeightDecayFusion>());
|
|
if (!(context_ptr->get_param<bool>(MS_CTX_ENABLE_GRAPH_KERNEL))) {
|
|
pm->AddPass(std::make_shared<opt::CastAllFusion>("cast_all"));
|
|
}
|
|
pm->AddPass(std::make_shared<opt::CombineMomentumFusion>("combine_momentum"));
|
|
pm->AddPass(std::make_shared<opt::ReplaceMomentumCastFusion>());
|
|
pm->AddPass(std::make_shared<opt::ReplaceAddNFusion>());
|
|
optimizer->AddPassManager(pm);
|
|
(void)optimizer->Optimize(kernel_graph);
|
|
kernel_graph->SetExecOrderByDefault();
|
|
}
|
|
|
|
void GPUSession::HardwareOptimize(const std::shared_ptr<KernelGraph> &kernel_graph) {
|
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
|
auto pm = std::make_shared<opt::PassManager>();
|
|
pm->AddPass(std::make_shared<opt::BatchNormReluFusion>());
|
|
pm->AddPass(std::make_shared<opt::BatchNormReluGradFusion>());
|
|
pm->AddPass(std::make_shared<opt::BatchNormAddReluFusion>());
|
|
pm->AddPass(std::make_shared<opt::BatchNormAddReluGradFusion>());
|
|
pm->AddPass(std::make_shared<opt::InsertFormatTransformOp>());
|
|
pm->AddPass(std::make_shared<opt::RemoveFormatTransformPair>());
|
|
pm->AddPass(std::make_shared<opt::RemoveRedundantFormatTransform>());
|
|
pm->AddPass(std::make_shared<opt::CudnnInplaceAggregate>());
|
|
pm->AddPass(std::make_shared<opt::ReluV2Pass>());
|
|
pm->AddPass(std::make_shared<opt::AddReluV2Fusion>());
|
|
pm->AddPass(std::make_shared<opt::AddReluGradV2Fusion>());
|
|
pm->AddPass(std::make_shared<opt::AllReduceFusion>());
|
|
pm->AddPass(std::make_shared<opt::GetitemTuple>());
|
|
pm->AddPass(std::make_shared<opt::ReducePrecisionFusion>("reduce_precision"));
|
|
optimizer->AddPassManager(pm);
|
|
(void)optimizer->Optimize(kernel_graph);
|
|
kernel_graph->SetExecOrderByDefault();
|
|
}
|
|
|
|
void GPUSession::RunOpHardwareOptimize(const std::shared_ptr<KernelGraph> &kernel_graph) {
|
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
|
auto pm = std::make_shared<opt::PassManager>();
|
|
pm->AddPass(std::make_shared<opt::ReducePrecisionFusion>("reduce_precision"));
|
|
optimizer->AddPassManager(pm);
|
|
(void)optimizer->Optimize(kernel_graph);
|
|
kernel_graph->SetExecOrderByDefault();
|
|
}
|
|
|
|
void GPUSession::GraphKernelOptimize(const std::shared_ptr<KernelGraph> &kernel_graph) {
|
|
auto context_ptr = MsContext::GetInstance();
|
|
MS_EXCEPTION_IF_NULL(context_ptr);
|
|
if (!(context_ptr->get_param<bool>(MS_CTX_ENABLE_GRAPH_KERNEL))) {
|
|
return;
|
|
}
|
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
|
auto pm = std::make_shared<opt::PassManager>("graph_kernel_pm");
|
|
std::vector<PrimitivePtr> duplicated_ops = {prim::kPrimReshape, prim::kPrimExpandDims, prim::kPrimCast};
|
|
pm->AddPass(std::make_shared<opt::GraphKernelExpander>());
|
|
pm->AddPass(std::make_shared<opt::ShapeOpsSplitter>(duplicated_ops));
|
|
pm->AddPass(std::make_shared<opt::BasicOpsFusion>());
|
|
pm->AddPass(std::make_shared<opt::EliminateRedundantOutput>());
|
|
pm->AddPass(std::make_shared<opt::GraphKernelCSE>(duplicated_ops));
|
|
pm->AddPass(std::make_shared<opt::ArithmeticSimplify>());
|
|
pm->AddPass(std::make_shared<opt::GraphKernelCSE>(duplicated_ops));
|
|
pm->AddPass(std::make_shared<opt::TensorPromotion>());
|
|
pm->AddPass(std::make_shared<opt::GraphKernelSplitter>());
|
|
pm->AddPass(std::make_shared<opt::GraphKernelCSE>());
|
|
// The CSE may output a graph with repeated outputs.
|
|
pm->AddPass(std::make_shared<opt::EliminateRedundantOutput>());
|
|
// After Simplify and Splitter, a lot of redundant getitem/maketuple
|
|
// will be exposed, use GetitemTuple Pass to delete them.
|
|
pm->AddPass(std::make_shared<opt::GetitemTuple>());
|
|
pm->AddPass(std::make_shared<opt::AtomicCleanInsertter>());
|
|
pm->AddPass(std::make_shared<opt::CleanAllInOnce>());
|
|
pm->AddPass(std::make_shared<opt::BindValueToGraph>());
|
|
optimizer->AddPassManager(pm);
|
|
(void)optimizer->Optimize(kernel_graph);
|
|
kernel_graph->SetExecOrderByDefault();
|
|
}
|
|
|
|
void GPUSession::AssignStream(const std::shared_ptr<KernelGraph> &kernel_graph) {
|
|
MS_EXCEPTION_IF_NULL(kernel_graph);
|
|
device::gpu::AssignGpuStream(kernel_graph);
|
|
}
|
|
|
|
void GPUSession::BuildKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
|
device::gpu::GpuBuild(kernel_graph);
|
|
}
|
|
|
|
void GPUSession::AllocateMemory(KernelGraph *kernel_graph) const {
|
|
MS_EXCEPTION_IF_NULL(kernel_graph);
|
|
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
|
MS_EXCEPTION_IF_NULL(runtime_instance);
|
|
runtime_instance->AssignMemory(kernel_graph);
|
|
}
|
|
|
|
void GPUSession::RunOpAllocateMemory(const std::vector<tensor::TensorPtr> &input_tensors,
|
|
KernelGraph *kernel_graph) const {
|
|
MS_EXCEPTION_IF_NULL(kernel_graph);
|
|
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
|
MS_EXCEPTION_IF_NULL(runtime_instance);
|
|
runtime_instance->RunOpAssignMemory(input_tensors, kernel_graph);
|
|
}
|
|
|
|
void GPUSession::RunOpClearMemory(KernelGraph *kernel_graph) const {
|
|
MS_EXCEPTION_IF_NULL(kernel_graph);
|
|
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
|
MS_EXCEPTION_IF_NULL(runtime_instance);
|
|
runtime_instance->RunOpClearMemory(kernel_graph);
|
|
}
|
|
|
|
void GPUSession::LoadInputData(const std::shared_ptr<KernelGraph> &kernel_graph,
|
|
const std::vector<tensor::TensorPtr> &inputs_const) const {
|
|
std::vector<tensor::TensorPtr> inputs(inputs_const);
|
|
MS_EXCEPTION_IF_NULL(kernel_graph);
|
|
auto &input_nodes = kernel_graph->input_nodes();
|
|
auto ms_context = MsContext::GetInstance();
|
|
MS_EXCEPTION_IF_NULL(ms_context);
|
|
if (inputs.size() != input_nodes.size()) {
|
|
MS_LOG(EXCEPTION) << "Tensor input:" << inputs.size() << " is not equal graph inputs:" << input_nodes.size();
|
|
}
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
auto tensor = inputs[i];
|
|
MS_EXCEPTION_IF_NULL(tensor);
|
|
auto input_node = input_nodes[i];
|
|
MS_EXCEPTION_IF_NULL(input_node);
|
|
if (input_node->isa<Parameter>() && AnfAlgo::OutputAddrExist(input_node, 0)) {
|
|
#if ENABLE_CPU && ENABLE_GPU
|
|
const std::string ¶m_name = input_node->fullname_with_scope();
|
|
if (ps::ps_cache_instance.IsHashTable(param_name)) {
|
|
continue;
|
|
}
|
|
#endif
|
|
auto pk_node = input_node->cast<ParameterPtr>();
|
|
auto device_address = AnfAlgo::GetMutableOutputAddr(pk_node, 0);
|
|
auto tensor_address = std::dynamic_pointer_cast<device::DeviceAddress>(tensor->device_address());
|
|
bool need_sync = false;
|
|
if (ms_context->get_param<bool>(MS_CTX_ENABLE_PYNATIVE_INFER)) {
|
|
if (tensor_address == nullptr || tensor_address != device_address) {
|
|
need_sync = true;
|
|
}
|
|
} else if (tensor->NeedSyncHostToDevice() || tensor_address == nullptr) {
|
|
need_sync = true;
|
|
} else if (tensor_address != device_address) {
|
|
if (tensor_address->DeviceType() == device_address->DeviceType()) {
|
|
AnfAlgo::SetOutputAddr(tensor_address, 0, pk_node.get());
|
|
} else {
|
|
need_sync = true;
|
|
}
|
|
}
|
|
if (need_sync) {
|
|
if (AnfAlgo::IsParameterWeight(input_node->cast<ParameterPtr>()) ||
|
|
ms_context->get_param<int>(MS_CTX_EXECUTION_MODE) == kPynativeMode) {
|
|
tensor->set_device_address(device_address);
|
|
}
|
|
MS_EXCEPTION_IF_NULL(device_address);
|
|
if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(pk_node, 0),
|
|
LongToSize(tensor->data().nbytes()), tensor->data_type(),
|
|
tensor->data_c())) {
|
|
MS_LOG(EXCEPTION) << "SyncHostToDevice failed.";
|
|
}
|
|
}
|
|
}
|
|
tensor->set_sync_status(kNoNeedSync);
|
|
}
|
|
}
|
|
|
|
void GPUSession::Execute(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
|
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
|
MS_EXCEPTION_IF_NULL(runtime_instance);
|
|
if (!runtime_instance->Run(kernel_graph.get(), false)) {
|
|
MS_LOG(EXCEPTION) << "GPU execute graph failed!";
|
|
}
|
|
}
|
|
|
|
GraphId GPUSession::CompileGraphImpl(const AnfNodePtrList &lst, const AnfNodePtrList &outputs) {
|
|
// Construct graph, if successfully, graph_sum_ + 1
|
|
auto graph_id = graph_sum_;
|
|
auto graph = ConstructKernelGraph(lst, outputs);
|
|
MS_EXCEPTION_IF_NULL(graph);
|
|
// Prepare ms context info for dump .pb graph
|
|
auto context_ptr = MsContext::GetInstance();
|
|
MS_EXCEPTION_IF_NULL(context_ptr);
|
|
bool save_graphs = context_ptr->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG);
|
|
// Dump .pb graph before graph optimization
|
|
if (save_graphs) {
|
|
DumpIRProto(graph, "before_opt_" + std::to_string(graph_id));
|
|
}
|
|
// Graph optimization irrelevant to device data format
|
|
Optimize(graph);
|
|
// Select kernel build info
|
|
SelectKernel(graph);
|
|
// Graph optimization relevant to device data format
|
|
HardwareOptimize(graph);
|
|
// Graph kernel fusion optimization
|
|
GraphKernelOptimize(graph);
|
|
// Start gpu kernel runtime
|
|
StartKernelRT();
|
|
#if ENABLE_CPU && ENABLE_GPU
|
|
InitPsWorker(graph);
|
|
#endif
|
|
// Assign CUDA streams
|
|
AssignStream(graph);
|
|
// Dump .pb graph before remove nop nodes
|
|
if (save_graphs) {
|
|
DumpIRProto(graph, "before_removeNop_" + std::to_string(graph_id));
|
|
}
|
|
// Update Graph Dynamic Shape Attr.
|
|
UpdateGraphDynamicShapeAttr(NOT_NULL(graph));
|
|
graph->UpdateGraphDynamicAttr();
|
|
// Hide NopOp from execution graph
|
|
opt::HideNopNode(graph.get());
|
|
// Build kernel if node is cnode
|
|
BuildKernel(graph);
|
|
// Set graph execution order before memory alloc, ensure that memory alloc is according to the reorder graph
|
|
auto execution_order = graph->execution_order();
|
|
Reorder(&execution_order);
|
|
graph->set_execution_order(execution_order);
|
|
// Get summary nodes.
|
|
SetSummaryNodes(graph.get());
|
|
// Dump .pb graph after graph optimization
|
|
if (save_graphs) {
|
|
DumpIRProto(graph, "after_opt_" + std::to_string(graph_id));
|
|
}
|
|
// Set graph manager.
|
|
MS_EXCEPTION_IF_NULL(context_);
|
|
FuncGraphManagerPtr manager = MakeManager({graph});
|
|
context_->AddManager(manager);
|
|
if (manager) {
|
|
manager->AddFuncGraph(graph);
|
|
graph->set_manager(manager);
|
|
}
|
|
// Alloc memory, including static memory and dynamic memory
|
|
AllocateMemory(graph.get());
|
|
|
|
#ifdef ENABLE_DEBUGGER
|
|
if (debugger_ && debugger_->DebuggerBackendEnabled()) {
|
|
debugger_->LoadGraphs(graph);
|
|
}
|
|
#endif
|
|
MS_LOG(INFO) << "CompileGraph graph_id: " << graph_id;
|
|
|
|
return graph_id;
|
|
}
|
|
|
|
void GPUSession::RunGraphImpl(const GraphId &graph_id, const std::vector<tensor::TensorPtr> &inputs,
|
|
VectorRef *outputs) {
|
|
auto &kernel_graph = graphs_[graph_id];
|
|
MS_LOG(INFO) << "RunGraph graph_id: " << graph_id;
|
|
// In pynative mode, device addresses of tensors in value nodes change.
|
|
SyncValueNodeDeviceAddr(kernel_graph);
|
|
// Load input data from user input
|
|
LoadInputData(kernel_graph, inputs);
|
|
if (debugger_) {
|
|
debugger_->PreExecute(kernel_graph, graph_sum_);
|
|
}
|
|
#if ENABLE_CPU && ENABLE_GPU
|
|
// Initialize parameter server
|
|
InitPSParamAndOptim(kernel_graph, inputs);
|
|
#endif
|
|
MS_EXCEPTION_IF_NULL(kernel_graph);
|
|
// It's InitDataset graph if kernel_num == 1, skip the loop.
|
|
int kernel_num = kernel_graph->execution_order().size();
|
|
int64_t loopsize = (kernel_num > 1) ? ConfigManager::GetInstance().gpu_loopsink_size() : 1;
|
|
for (int64_t i = 0; i < loopsize; i++) {
|
|
#if ENABLE_CPU && ENABLE_GPU
|
|
std::string channel_name;
|
|
if (ps::PsDataPrefetch::GetInstance().cache_enable() && IsGetNextGraph(graph_id, &channel_name)) {
|
|
ps::ps_cache_instance.IncreaseGraphStep(channel_name);
|
|
}
|
|
#endif
|
|
Execute(kernel_graph);
|
|
}
|
|
// In pynative mode, device addresses of tensors in value nodes need be clean.
|
|
CleanValueNodeDeviceAddr(kernel_graph);
|
|
// Summary
|
|
auto context_ptr = MsContext::GetInstance();
|
|
MS_EXCEPTION_IF_NULL(context_ptr);
|
|
if (context_ptr->get_param<bool>(MS_CTX_ENABLE_GPU_SUMMARY)) {
|
|
Summary(kernel_graph.get());
|
|
}
|
|
PostIterationDbg(kernel_graph);
|
|
}
|
|
|
|
void GPUSession::BuildOpImpl(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
|
|
const std::vector<tensor::TensorPtr> &input_tensors,
|
|
const std::vector<int64_t> &tensors_mask) {
|
|
// Check if the graph cache exists.
|
|
if (run_op_graphs_.find(graph_info) != run_op_graphs_.end()) {
|
|
return;
|
|
}
|
|
// Prepare the graph
|
|
auto kernel_graph = ConstructSingleOpGraph(op_run_info, input_tensors, tensors_mask);
|
|
MS_EXCEPTION_IF_NULL(kernel_graph);
|
|
SelectKernel(kernel_graph);
|
|
RunOpHardwareOptimize(kernel_graph);
|
|
StartKernelRT();
|
|
// Hide NopOp from execution graph
|
|
opt::HideNopNode(kernel_graph.get());
|
|
BuildKernel(kernel_graph);
|
|
run_op_graphs_[graph_info] = kernel_graph;
|
|
}
|
|
|
|
void GPUSession::RunOpImpl(const GraphInfo &graph_info, OpRunInfo *op_run_info,
|
|
std::vector<tensor::TensorPtr> *input_tensors, VectorRef *outputs,
|
|
const std::vector<int64_t> &tensors_mask) {
|
|
MS_EXCEPTION_IF_NULL(input_tensors);
|
|
MS_EXCEPTION_IF_NULL(op_run_info);
|
|
BuildOpImpl(*op_run_info, graph_info, *input_tensors, tensors_mask);
|
|
EraseValueNodeTensor(tensors_mask, input_tensors);
|
|
// run op
|
|
auto kernel_graph = run_op_graphs_[graph_info];
|
|
MS_EXCEPTION_IF_NULL(kernel_graph);
|
|
// Remove NopOp from execution graph
|
|
opt::RemoveNopNode(kernel_graph.get());
|
|
RunOpAllocateMemory(*input_tensors, kernel_graph.get());
|
|
// Execute the computation
|
|
LoadInputData(kernel_graph, *input_tensors);
|
|
Execute(kernel_graph);
|
|
// Fetch outputs
|
|
UpdateOutputs(kernel_graph, outputs, *input_tensors);
|
|
// update output abstract of dynamic op to op_run_info
|
|
if (op_run_info->is_dynamic_shape) {
|
|
UpdateOutputAbstract(kernel_graph, op_run_info);
|
|
}
|
|
RunOpClearMemory(kernel_graph.get());
|
|
}
|
|
|
|
void GPUSession::Dump(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
|
if (debugger_->DebuggerBackendEnabled()) {
|
|
MS_EXCEPTION_IF_NULL(kernel_graph);
|
|
E2eDumpUtil::DumpData(kernel_graph.get(), device_id_, debugger_.get());
|
|
} else {
|
|
DumpJsonParser::GetInstance().UpdateDumpIter();
|
|
}
|
|
}
|
|
|
|
bool GPUSession::DumpDataEnabledIteration() const {
|
|
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
|
MS_EXCEPTION_IF_NULL(runtime_instance);
|
|
return runtime_instance->DumpDataEnabledIteration();
|
|
}
|
|
|
|
void GPUSession::PostIterationDbg(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
|
bool dump_enabled = DumpDataEnabledIteration();
|
|
// debug used for dump
|
|
if (debugger_ && dump_enabled) {
|
|
Dump(kernel_graph);
|
|
} else {
|
|
DumpJsonParser::GetInstance().UpdateDumpIter();
|
|
}
|
|
if (debugger_) {
|
|
debugger_->PostExecute();
|
|
}
|
|
}
|
|
|
|
void GPUSession::SyncValueNodeDeviceAddr(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
|
auto context_ptr = MsContext::GetInstance();
|
|
MS_EXCEPTION_IF_NULL(context_ptr);
|
|
if (context_ptr->get_param<int>(MS_CTX_EXECUTION_MODE) != kPynativeMode) {
|
|
return;
|
|
}
|
|
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
|
MS_EXCEPTION_IF_NULL(runtime_instance);
|
|
runtime_instance->SyncValueNodeDeviceAddr(kernel_graph.get());
|
|
}
|
|
|
|
void GPUSession::CleanValueNodeDeviceAddr(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
|
auto context_ptr = MsContext::GetInstance();
|
|
MS_EXCEPTION_IF_NULL(context_ptr);
|
|
if (context_ptr->get_param<int>(MS_CTX_EXECUTION_MODE) != kPynativeMode) {
|
|
return;
|
|
}
|
|
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
|
MS_EXCEPTION_IF_NULL(runtime_instance);
|
|
runtime_instance->CleanValueNodeDeviceAddr(kernel_graph.get());
|
|
}
|
|
|
|
void GPUSession::SyncStream() {
|
|
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
|
MS_EXCEPTION_IF_NULL(runtime_instance);
|
|
auto ret = runtime_instance->SyncStream();
|
|
if (!ret) {
|
|
MS_LOG(ERROR) << "Sync stream error!";
|
|
}
|
|
}
|
|
} // namespace gpu
|
|
} // namespace session
|
|
} // namespace mindspore
|