You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/ir/meta_tensor_test.cc

379 lines
12 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include <memory>
#include <vector>
#include "common/common_test.h"
#include "common/py_func_graph_fetcher.h"
#include "securec/include/securec.h"
#include "ir/tensor.h"
#include "pybind_api/ir/tensor_py.h"
using mindspore::tensor::TensorPy;
namespace mindspore {
namespace tensor {
class TestMetaTensor : public UT::Common {
public:
TestMetaTensor() {}
virtual void SetUp() {
std::vector<int64_t> dimensions({2, 3});
meta_tensor_ = MetaTensor(TypeId::kNumberTypeFloat64, dimensions);
}
protected:
MetaTensor meta_tensor_;
};
TEST_F(TestMetaTensor, InitTest) {
std::vector<int64_t> dimensions({2, 3});
MetaTensor meta_tensor(TypeId::kNumberTypeFloat64, dimensions);
// Test type
ASSERT_EQ(TypeId::kNumberTypeFloat64, meta_tensor.data_type());
// Test dimensions
ASSERT_EQ(2, meta_tensor.DimensionSize(0));
ASSERT_EQ(3, meta_tensor.DimensionSize(1));
ASSERT_EQ(-1, meta_tensor.DimensionSize(2));
// Test number of elements
ASSERT_EQ(6, meta_tensor.ElementsNum());
}
// Test type
TEST_F(TestMetaTensor, TypeTest) {
meta_tensor_.set_data_type(TypeId::kNumberTypeInt32);
ASSERT_EQ(TypeId::kNumberTypeInt32, meta_tensor_.data_type());
}
// Test shape
TEST_F(TestMetaTensor, ShapeTest) {
std::vector<int64_t> dimensions({5, 6, 7});
meta_tensor_.set_shape(dimensions);
ASSERT_EQ(5, meta_tensor_.DimensionSize(0));
ASSERT_EQ(6, meta_tensor_.DimensionSize(1));
ASSERT_EQ(7, meta_tensor_.DimensionSize(2));
// Test number of elements
ASSERT_EQ(210, meta_tensor_.ElementsNum());
}
TEST_F(TestMetaTensor, EqualTest) {
std::vector<int64_t> dimensions({2, 3});
MetaTensor meta_tensor_x(TypeId::kNumberTypeFloat64, dimensions);
MetaTensor meta_tensor_y(meta_tensor_x);
ASSERT_TRUE(meta_tensor_x == meta_tensor_y);
MetaTensor meta_tensor_z(TypeId::kNumberTypeFloat32, dimensions);
ASSERT_FALSE(meta_tensor_x == meta_tensor_z);
meta_tensor_z = meta_tensor_x;
ASSERT_TRUE(meta_tensor_x == meta_tensor_z);
}
class TestTensor : public UT::Common {
public:
TestTensor() {}
virtual void SetUp() { UT::InitPythonPath(); }
};
py::array_t<float, py::array::c_style> BuildInputTensor() {
// Init tensor data by py::array_t<float>
py::array_t<float, py::array::c_style> input = py::array_t<float, py::array::c_style>({2, 3});
auto array = input.mutable_unchecked();
float start = 0;
for (int i = 0; i < array.shape(0); i++) {
for (int j = 0; j < array.shape(1); j++) {
array(i, j) = start++;
}
}
return input;
}
TEST_F(TestTensor, PyArrayScalarTest) {
std::vector<int64_t> dimensions;
py::array data = py::array_t<int64_t, py::array::c_style>(dimensions);
uint8_t *data_buf = reinterpret_cast<uint8_t *>(data.request(true).ptr);
int64_t num = 1;
errno_t ret = memcpy_s(data_buf, sizeof(int64_t), &num, sizeof(int64_t));
ASSERT_EQ(0, ret);
ASSERT_EQ(num, *data_buf);
}
TEST_F(TestTensor, InitScalarTest) {
std::vector<int64_t> dimensions;
Tensor tensor(TypeId::kNumberTypeInt64, dimensions);
uint8_t *data_buf = reinterpret_cast<uint8_t *>(tensor.data_c());
int64_t num = 1;
errno_t ret = memcpy_s(data_buf, sizeof(int64_t), &num, sizeof(int64_t));
ASSERT_EQ(0, ret);
ASSERT_EQ(num, *data_buf);
// Test type
ASSERT_EQ(TypeId::kNumberTypeInt64, tensor.data_type());
// Test dimensions
ASSERT_EQ(0, tensor.DataDim());
// Test shape
ASSERT_EQ(0, tensor.shape().size());
std::vector<int64_t> empty_shape;
ASSERT_EQ(empty_shape, tensor.shape());
// Test number of elements
ASSERT_EQ(1, tensor.ElementsNum());
ASSERT_EQ(1, tensor.DataSize());
}
TEST_F(TestTensor, InitTensorPtrTest) {
std::vector<int64_t> dimensions;
Tensor tensor(TypeId::kNumberTypeInt64, dimensions);
std::shared_ptr<Tensor> tensor_ptr = std::make_shared<Tensor>(tensor);
// Test type
ASSERT_EQ(TypeId::kNumberTypeInt64, tensor_ptr->data_type());
// Test dimensions
ASSERT_EQ(0, tensor_ptr->DataDim());
// Test shape
ASSERT_EQ(0, tensor_ptr->shape().size());
std::vector<int64_t> empty_shape;
ASSERT_EQ(empty_shape, tensor_ptr->shape());
// Test number of elements
ASSERT_EQ(1, tensor_ptr->ElementsNum());
ASSERT_EQ(1, tensor_ptr->DataSize());
}
TEST_F(TestTensor, InitByTupleTest) {
const std::vector<int64_t> shape = {2, 3, 4};
TypePtr data_type = kFloat32;
Tensor tuple_tensor(data_type->type_id(), shape);
ASSERT_EQ(2, tuple_tensor.DimensionSize(0));
ASSERT_EQ(3, tuple_tensor.DimensionSize(1));
ASSERT_EQ(4, tuple_tensor.DimensionSize(2));
// Test number of elements
ASSERT_EQ(24, tuple_tensor.ElementsNum());
ASSERT_EQ(TypeId::kNumberTypeFloat32, tuple_tensor.data_type());
py::tuple tuple = py::make_tuple(1.0, 2.0, 3, 4, 5, 6);
TensorPtr tensor = TensorPy::MakeTensor(py::array(tuple), kFloat64);
py::array array = TensorPy::AsNumpy(*tensor);
std::cout << "Dim: " << array.ndim() << std::endl;
ASSERT_EQ(1, array.ndim());
std::cout << "Num of Elements: " << array.size() << std::endl;
ASSERT_EQ(6, array.size());
std::cout << "Elements: " << std::endl;
// Must be double, or the result is not right
double *tensor_data = reinterpret_cast<double *>(tensor->data_c());
for (int i = 0; i < array.size(); i++) {
std::cout << tensor_data[i] << std::endl;
}
}
TEST_F(TestTensor, EqualTest) {
py::tuple tuple = py::make_tuple(1, 2, 3, 4, 5, 6);
TensorPtr tensor_int8 = TensorPy::MakeTensor(py::array(tuple), kInt8);
ASSERT_TRUE(*tensor_int8 == *tensor_int8);
ASSERT_EQ(TypeId::kNumberTypeInt8, tensor_int8->data_type_c());
TensorPtr tensor_int16 = TensorPy::MakeTensor(py::array(tuple), kInt16);
ASSERT_EQ(TypeId::kNumberTypeInt16, tensor_int16->data_type_c());
TensorPtr tensor_int32 = TensorPy::MakeTensor(py::array(tuple), kInt32);
ASSERT_EQ(TypeId::kNumberTypeInt32, tensor_int32->data_type_c());
TensorPtr tensor_float16 = TensorPy::MakeTensor(py::array(tuple), kFloat16);
ASSERT_EQ(TypeId::kNumberTypeFloat16, tensor_float16->data_type_c());
TensorPtr tensor_float32 = TensorPy::MakeTensor(py::array(tuple), kFloat32);
ASSERT_EQ(TypeId::kNumberTypeFloat32, tensor_float32->data_type_c());
TensorPtr tensor_float64 = TensorPy::MakeTensor(py::array(tuple), kFloat64);
ASSERT_EQ(TypeId::kNumberTypeFloat64, tensor_float64->data_type_c());
}
TEST_F(TestTensor, ValueEqualTest) {
py::tuple tuple = py::make_tuple(1, 2, 3, 4, 5, 6);
TensorPtr t1 = TensorPy::MakeTensor(py::array(tuple), kInt32);
TensorPtr t2 = TensorPy::MakeTensor(py::array(tuple), kInt32);
ASSERT_TRUE(t1->ValueEqual(*t1));
ASSERT_TRUE(t1->ValueEqual(*t2));
std::vector<int64_t> shape = {6};
TensorPtr t3 = std::make_shared<Tensor>(kInt32->type_id(), shape);
TensorPtr t4 = std::make_shared<Tensor>(kInt32->type_id(), shape);
ASSERT_TRUE(t3->ValueEqual(*t3));
ASSERT_FALSE(t3->ValueEqual(*t4));
ASSERT_FALSE(t3->ValueEqual(*t1));
ASSERT_FALSE(t1->ValueEqual(*t3));
memcpy_s(t3->data_c(), t3->data().nbytes(), t1->data_c(), t1->data().nbytes());
ASSERT_TRUE(t1->ValueEqual(*t3));
ASSERT_FALSE(t3->ValueEqual(*t4));
ASSERT_FALSE(t4->ValueEqual(*t3));
}
TEST_F(TestTensor, PyArrayTest) {
py::array_t<float, py::array::c_style> input({2, 3});
auto array = input.mutable_unchecked();
float sum = 0;
std::cout << "sum"
<< " = " << std::endl;
float start = 0;
for (int i = 0; i < array.shape(0); i++) {
for (int j = 0; j < array.shape(1); j++) {
array(i, j) = start++;
sum += array(i, j);
std::cout << "sum + "
<< "array[" << i << ", " << j << "]"
<< " = " << sum << std::endl;
}
}
ASSERT_EQ(15, sum);
}
TEST_F(TestTensor, InitByFloatArrayDataCTest) {
// Init tensor data by py::array_t<float>
auto tensor = TensorPy::MakeTensor(BuildInputTensor());
// Print some information of the tensor
std::cout << "Datatype: " << tensor->data_type() << std::endl;
ASSERT_EQ(TypeId::kNumberTypeFloat32, tensor->data_type());
std::cout << "Dim: " << tensor->DataDim() << std::endl;
ASSERT_EQ(2, tensor->DataDim());
std::cout << "Num of Elements: " << tensor->ElementsNum() << std::endl;
ASSERT_EQ(6, tensor->ElementsNum());
// Print each elements
std::cout << "Elements: " << std::endl;
float *tensor_data = reinterpret_cast<float *>(tensor->data_c());
for (int i = 0; i < tensor->ElementsNum(); i++) {
std::cout << tensor_data[i] << std::endl;
}
}
TEST_F(TestTensor, InitByFloatArrayDataTest) {
// Init tensor data by py::array_t<float>
TensorPtr tensor = TensorPy::MakeTensor(BuildInputTensor());
// Print some information of the tensor
std::cout << "Datatype: " << tensor->data_type() << std::endl;
ASSERT_EQ(TypeId::kNumberTypeFloat32, tensor->data_type());
std::cout << "Dim: " << tensor->DataDim() << std::endl;
ASSERT_EQ(2, tensor->DataDim());
std::vector<int64_t> dimensions = tensor->shape();
ASSERT_GT(dimensions.size(), 1);
std::cout << "Dim0: " << dimensions[0] << std::endl;
ASSERT_EQ(2, dimensions[0]);
std::cout << "Dim1: " << dimensions[1] << std::endl;
ASSERT_EQ(3, dimensions[1]);
std::cout << "Num of Elements: " << tensor->ElementsNum() << std::endl;
ASSERT_EQ(6, tensor->ElementsNum());
// Print each elements
std::cout << "Elements: " << std::endl;
py::array_t<float> data = py::cast<py::array_t<float>>(TensorPy::AsNumpy(*tensor));
auto array = data.unchecked<2>();
for (int i = 0; i < array.shape(0); i++) {
for (int j = 0; j < array.shape(1); j++) {
std::cout << array(i, j) << std::endl;
}
}
}
TEST_F(TestTensor, PyArrayDataTest) {
py::array_t<float, py::array::c_style> input({2, 3});
float *data = reinterpret_cast<float *>(input.request().ptr);
float ge_tensor_data[] = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6};
errno_t ret = memcpy_s(data, input.nbytes(), ge_tensor_data, sizeof(ge_tensor_data));
ASSERT_EQ(0, ret);
auto array = input.mutable_unchecked();
for (int i = 0; i < array.shape(0); i++) {
for (int j = 0; j < array.shape(1); j++) {
ASSERT_EQ(array(i, j), ge_tensor_data[3 * i + j]);
}
}
}
TEST_F(TestTensor, TensorDataTest) {
// Init a data buffer
float ge_tensor_data[] = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6};
// Create a Tensor with wanted data type and shape
Tensor tensor(TypeId::kNumberTypeFloat32, std::vector<int64_t>({2, 3}));
// Get the writable data pointer from the tensor
float *me_tensor_data = reinterpret_cast<float *>(tensor.data_c());
// Copy data from buffer to tensor's data
errno_t ret = memcpy_s(me_tensor_data, tensor.data().nbytes(), ge_tensor_data, sizeof(ge_tensor_data));
ASSERT_EQ(0, ret);
// Testify if the data has been copied to the tensor data
py::array_t<float> data = py::cast<py::array_t<float>>(TensorPy::AsNumpy(tensor));
auto array = data.mutable_unchecked();
for (int i = 0; i < array.shape(0); i++) {
for (int j = 0; j < array.shape(1); j++) {
std::cout << "array[" << i << ", " << j << "]"
<< " = " << array(i, j) << std::endl;
ASSERT_EQ(array(i, j), ge_tensor_data[3 * i + j]);
}
}
}
TEST_F(TestTensor, TensorPyCast) {
std::vector<int64_t> shape{2, 3, 4, 5};
py::tuple py_tuple = py::make_tuple(std::make_shared<Tensor>(kNumberTypeFloat32, shape));
auto shape1 = py::cast<Tensor &>(py_tuple[0]).shape();
const py::tuple &t = py_tuple;
auto shape2 = py::cast<const Tensor &>(t[0]).shape();
auto shape3 = py::cast<Tensor &>(t[0]).shape();
ASSERT_EQ(shape, shape1);
ASSERT_EQ(shape, shape2);
ASSERT_EQ(shape, shape3);
}
} // namespace tensor
} // namespace mindspore