You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/nn/optim/test_lr_schedule.py

72 lines
2.4 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_lr_schedule """
import numpy as np
from mindspore import Parameter, ParameterTuple, Tensor
from mindspore.nn import Cell
from mindspore.nn.optim import Optimizer
from mindspore.ops.operations import BiasAdd, MatMul
import mindspore.ops.composite as C
grad_by_list = C.GradOperation(get_by_list=True)
class Net(Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.weight = Parameter(Tensor(np.ones([64, 10])), name="weight")
self.bias = Parameter(Tensor(np.ones([10])), name="bias")
self.matmul = MatMul()
self.biasAdd = BiasAdd()
def construct(self, x):
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
return x
class _TrainOneStepCell(Cell):
""" _TrainOneStepCell definition """
def __init__(self, network, optimizer):
"""
Append an optimizer to the training network after that the construct
function can be called to create the backward graph.
Arguments:
network: The training network.
Note that loss function should have been added.
optimizer: optimizer for updating the weights
"""
super(_TrainOneStepCell, self).__init__(auto_prefix=False)
self.network = network
self.weights = ParameterTuple(network.get_parameters())
if not isinstance(optimizer, Optimizer):
raise TypeError('{} is not an optimizer'.format(
type(optimizer).__name__))
self.has_lr_schedule = False
self.optimizer = optimizer
def construct(self, data, label, *args):
weights = self.weights
grads = grad_by_list(self.network, weights)(data, label)
if self.lr_schedule:
self.schedule.update_lr(*args)
return self.optimizer(grads)