You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
72 lines
2.4 KiB
72 lines
2.4 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test_lr_schedule """
|
|
import numpy as np
|
|
|
|
from mindspore import Parameter, ParameterTuple, Tensor
|
|
from mindspore.nn import Cell
|
|
from mindspore.nn.optim import Optimizer
|
|
from mindspore.ops.operations import BiasAdd, MatMul
|
|
import mindspore.ops.composite as C
|
|
|
|
|
|
grad_by_list = C.GradOperation(get_by_list=True)
|
|
|
|
|
|
class Net(Cell):
|
|
""" Net definition """
|
|
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.weight = Parameter(Tensor(np.ones([64, 10])), name="weight")
|
|
self.bias = Parameter(Tensor(np.ones([10])), name="bias")
|
|
self.matmul = MatMul()
|
|
self.biasAdd = BiasAdd()
|
|
|
|
def construct(self, x):
|
|
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
|
|
return x
|
|
|
|
|
|
class _TrainOneStepCell(Cell):
|
|
""" _TrainOneStepCell definition """
|
|
|
|
def __init__(self, network, optimizer):
|
|
"""
|
|
Append an optimizer to the training network after that the construct
|
|
function can be called to create the backward graph.
|
|
Arguments:
|
|
network: The training network.
|
|
Note that loss function should have been added.
|
|
optimizer: optimizer for updating the weights
|
|
"""
|
|
super(_TrainOneStepCell, self).__init__(auto_prefix=False)
|
|
self.network = network
|
|
self.weights = ParameterTuple(network.get_parameters())
|
|
|
|
if not isinstance(optimizer, Optimizer):
|
|
raise TypeError('{} is not an optimizer'.format(
|
|
type(optimizer).__name__))
|
|
|
|
self.has_lr_schedule = False
|
|
self.optimizer = optimizer
|
|
|
|
def construct(self, data, label, *args):
|
|
weights = self.weights
|
|
grads = grad_by_list(self.network, weights)(data, label)
|
|
if self.lr_schedule:
|
|
self.schedule.update_lr(*args)
|
|
return self.optimizer(grads)
|