You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_add_relu_redistributio...

90 lines
2.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation(get_all=True)
class AddRelu(nn.Cell):
def __init__(self, strategy0=None, strategy1=None):
super(AddRelu, self).__init__()
self.add = P.Add().shard(strategy=strategy0)
self.relu = P.ReLU().shard(strategy=strategy1)
def construct(self, x, z):
out = self.add(x, z)
return self.relu(out)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, z):
predict = self.network(x, z)
return self.loss(predict)
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.network = network
def construct(self, x, y):
return grad_all(self.network)(x, y)
def compile_net(net, x, y):
net.set_auto_parallel()
net.set_train()
_executor.compile(net, x, y)
def test_add_relu_stride_slice():
context.set_auto_parallel_context(device_num=8, global_rank=7)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy0 = ((1, 1), (1, 1))
strategy1 = ((8, 1),)
net = Grad(NetWithLoss(AddRelu(strategy0, strategy1)))
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([128, 32]), dtype=ms.float32)
compile_net(net, x, y)
def test_add_relu_all_gather():
context.set_auto_parallel_context(device_num=8, global_rank=7)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy0 = ((8, 1), (8, 1))
strategy1 = ((1, 1),)
net = Grad(NetWithLoss(AddRelu(strategy0, strategy1)))
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([128, 32]), dtype=ms.float32)
compile_net(net, x, y)