You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
142 lines
4.7 KiB
142 lines
4.7 KiB
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter
|
|
from mindspore import context
|
|
from mindspore.common.api import _executor
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
|
|
|
|
grad_all = C.GradOperation(get_all=True)
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, b):
|
|
predict = self.network(x, y, b)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, b):
|
|
return grad_all(self.network)(x, y, b)
|
|
|
|
|
|
def compile_net(net, x, y, b):
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x, y, b)
|
|
|
|
|
|
def test_rhombus1():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.matmul = P.MatMul()
|
|
self.tadd1 = P.Add()
|
|
self.tadd2 = P.Add()
|
|
self.weight = Parameter(Tensor(np.ones([128, 128]).astype(np.float32) * 0.01), "w", requires_grad=True)
|
|
|
|
def construct(self, x, y, z):
|
|
mm_out = self.matmul(x, self.weight)
|
|
ta1_out = self.tadd1(y, z)
|
|
out = self.tadd2(ta1_out, mm_out)
|
|
return out
|
|
|
|
size = 16
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([128, 128]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 128]), dtype=ms.float32)
|
|
b = Tensor(np.ones([128, 128]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_rhombus2():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul()
|
|
self.matmul2 = P.MatMul()
|
|
self.tadd1 = P.Add()
|
|
self.tadd2 = P.Add()
|
|
self.tadd3 = P.Add()
|
|
self.weight1 = Parameter(Tensor(np.ones([128, 128]).astype(np.float32) * 0.01), "w", requires_grad=True)
|
|
self.weight2 = Parameter(Tensor(np.ones([128, 128]).astype(np.float32) * 0.01), "w", requires_grad=True)
|
|
|
|
def construct(self, x, y, z):
|
|
mm1_out = self.matmul1(x, self.weight1)
|
|
ta1_out = self.tadd1(y, z)
|
|
ta2_out = self.tadd2(mm1_out, ta1_out)
|
|
mm2_out = self.matmul2(ta1_out, self.weight2)
|
|
ta3_out = self.tadd3(ta2_out, mm2_out)
|
|
return ta3_out
|
|
|
|
size = 16
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([128, 128]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 128]), dtype=ms.float32)
|
|
b = Tensor(np.ones([128, 128]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_rhombus3():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul()
|
|
self.tadd1 = P.Add()
|
|
self.tadd2 = P.Add()
|
|
self.tadd3 = P.Add()
|
|
self.tadd4 = P.Add()
|
|
self.weight1 = Parameter(Tensor(np.ones([128, 128]).astype(np.float32) * 0.01), "w", requires_grad=True)
|
|
self.t = Tensor(np.ones([128, 128]).astype(np.float32) * 0.01)
|
|
|
|
def construct(self, x, y, z):
|
|
mm1_out = self.matmul1(x, self.weight1)
|
|
ta1_out = self.tadd1(y, z)
|
|
ta2_out = self.tadd2(mm1_out, ta1_out)
|
|
ta3_out = self.tadd3(ta1_out, self.t)
|
|
ta4_out = self.tadd4(ta2_out, ta3_out)
|
|
return ta4_out
|
|
|
|
size = 16
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([128, 128]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 128]), dtype=ms.float32)
|
|
z = Tensor(np.ones([128, 128]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
compile_net(net, x, y, z)
|