You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_matmul_dropout.py

132 lines
4.4 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
import mindspore.common.dtype as mstype
from mindspore.common.seed import _get_graph_seed
from mindspore.common.api import _executor
from mindspore._checkparam import Validator
from mindspore.ops.primitive import constexpr
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation(get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b):
return grad_all(self.network)(x, y, b)
@constexpr
def _is_float_dtype(dtype):
if dtype in [mstype.float32, mstype.float16]:
return True
return False
class Dropout(nn.Cell):
def __init__(self, keep_prob=0.5, dtype=mstype.float32):
super(Dropout, self).__init__()
if keep_prob <= 0 or keep_prob > 1:
raise ValueError("dropout probability should be a number in range (0, 1], but got {}".format(keep_prob))
Validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name)
Validator.check_value_type('keep_prob', keep_prob, [float], self.cls_name)
self.keep_prob = keep_prob
seed0, seed1 = _get_graph_seed(0, "dropout")
self.seed0 = seed0
self.seed1 = seed1
self.dtype = dtype
self.get_shape = P.Shape()
self.dropout_gen_mask = P.DropoutGenMask(Seed0=self.seed0, Seed1=self.seed1)
self.dropout_do_mask = P.DropoutDoMask()
self.cast = P.Cast()
self.is_gpu = context.get_context('device_target') in ["GPU"]
self.dropout = P.Dropout(keep_prob)
def construct(self, x):
if not self.training:
return x
if self.is_gpu:
out, _ = self.dropout(x)
return out
if self.keep_prob == 1:
return x
shape = self.get_shape(x)
dtype = P.DType()(x)
if _is_float_dtype(dtype):
keep_prob = self.cast(self.keep_prob, dtype)
else:
keep_prob = self.cast(self.keep_prob, mstype.float16)
output = self.dropout_gen_mask(shape, keep_prob)
return self.dropout_do_mask(x, output, keep_prob)
def extend_repr(self):
return 'keep_prob={}, dtype={}'.format(self.keep_prob, self.dtype)
# model_parallel test
def test_two_matmul_dropout():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3):
super().__init__()
self.matmul1 = P.MatMul().shard(strategy1)
self.dropout = Dropout()
self.dropout.dropout_do_mask.shard(strategy2)
self.dropout.dropout_gen_mask.shard(strategy2)
self.matmul2 = P.MatMul().shard(strategy3)
def construct(self, x, y, b):
out = self.matmul1(x, y)
out = self.dropout(out)
out = self.matmul2(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((4, 2), (2, 1))
strategy2 = ((8, 1),)
strategy3 = ((1, 8), (8, 1))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net.set_auto_parallel()
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
net.set_train()
_executor.compile(net, x, y, b)