You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_repeated_calc.py

109 lines
3.4 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation(get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b):
return grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):
net.set_auto_parallel()
net.set_train()
_executor.compile(net, x, y, b)
# it has not redistribution
def test_tensoradd_reshape_matmul():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.add = P.Add().shard(strategy1)
self.reshape = P.Reshape()
self.matmul = P.MatMul().shard(strategy2)
def construct(self, x, y, b):
out = self.add(x, y)
out = self.reshape(out, (256, 16))
out = self.matmul(out, b)
return out
context.set_auto_parallel_context(device_num=64, global_rank=0, gradients_mean=True)
strategy1 = ((8, 1, 1), (8, 1, 1))
strategy2 = ((8, 1), (1, 8))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_context(save_graphs=True)
x = Tensor(np.ones([32, 8, 16]), dtype=ms.float32)
y = Tensor(np.ones([32, 8, 16]), dtype=ms.float32)
b = Tensor(np.ones([16, 16]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_two_matmul():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul1 = P.MatMul().shard(strategy1)
self.matmul2 = P.MatMul().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul1(x, y)
out = self.matmul2(out, b)
return out
context.set_auto_parallel_context(device_num=64, global_rank=0, gradients_mean=True)
strategy1 = ((8, 8), (8, 1))
strategy2 = ((8, 1), (1, 1))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_context(save_graphs=True)
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)